A mesh-based partition of unity method for discontinuity modeling

This study explores a numerical analysis scheme, the manifold method, within the framework of the partition of unity method. The manifold method is rooted in the discrete element method and has been used in solving discrete-continuum interaction problems. At its core, two meshes are employed in an analysis: the mathematical mesh provides the nodes for building a finite covering of the solution domain and the partition of unity functions; while the physical mesh provides the domain of integration. After providing a geometric interpretation and giving a construct overview, the working of the method is illustrated with a number of examples.

[1]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[2]  Hui-Ping Wang,et al.  A Lagrangian reproducing kernel particle method for metal forming analysis , 1998 .

[3]  J. Whiteman The Mathematics of Finite Elements and Applications II MAFELAP1975 , 1978 .

[4]  Gen-hua Shi Block system modeling by discontinuous deformation analysis , 1993 .

[5]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[6]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[7]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[8]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[9]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[10]  Seok-Soon Lee A computational method for frictional contact problem using finite element method , 1994 .

[11]  Gen-Hua Shi,et al.  Modeling rock joints and blocks by manifold method , 1992 .

[12]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[13]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[14]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[15]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[16]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[17]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[18]  Guangqi Chen,et al.  DEVELOPMENT OF HIGH-ORDER MANIFOLD METHOD , 1998 .

[19]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[20]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[21]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[22]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[23]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[24]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[25]  Eugenio Oñate,et al.  Announcement ?Meshfree Methods? , 2000 .

[26]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[27]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[28]  Wing Kam Liu,et al.  Numerical simulations of strain localization in inelastic solids using mesh‐free methods , 2000 .