Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool.

A common residue numbering scheme for all immunoglobulin variable domains (immunoglobulin light chain lambda (V(lambda)) and kappa (V(kappa)) variable domains, heavy chain variable domains (V(H)) and T-cell receptor alpha (V(alpha)), beta (V(beta)), gamma (V(gamma)) and delta (V(delta)) variable domains) has been devised. Based on the spatial alignment of known three-dimensional structures of immunoglobulin domains, it places the alignment gaps in a way that minimizes the average deviation from the averaged structure of the aligned domains. This residue numbering scheme was applied to the immunoglobulin variable domain structures in the PDB database to automate the extraction of information on structural variations in homologous positions of the different molecules. A number of methods are presented that allow the automated projection of information derived from individual structures or from the comparison of multi-structure alignments onto a graphical representation of the sequence alignment.

[1]  Crystal structure of galactan-binding mouse immunoglobulin J539 Fab at 4.5-A resolution. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.

[3]  K. D. Hardman,et al.  Single-chain antigen-binding proteins. , 1988, Science.

[4]  R. Bruccoleri,et al.  Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  N. Hilschmann,et al.  Die Primärstruktur des kristallisierbaren monoklonalen Immunglobulins IgG1 Kol. II. Aminosäuresequenz der L-Kette, λ-Typ, Subgruppe I , 1989 .

[6]  A. Lesk,et al.  Conformations of immunoglobulin hypervariable regions , 1989, Nature.

[7]  N. Hilschmann,et al.  [The primary structure of crystallizable monoclonal immunoglobulin IgG1 Kol. II. Amino acid sequence of the L-chain, gamma-type, subgroup I]. , 1989, Biological chemistry Hoppe-Seyler.

[8]  R. Glockshuber,et al.  A comparison of strategies to stabilize immunoglobulin Fv-fragments. , 1990, Biochemistry.

[9]  E. Kabat,et al.  Sequences of proteins of immunological interest , 1991 .

[10]  Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 1. X-ray crystallography, site-directed mutagenesis, and modeling of the complex with hapten. , 1991, Biochemistry.

[11]  K. D. Hardman,et al.  Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli. , 1991, Biochemistry.

[12]  I. Wilson,et al.  Structural evidence for induced fit as a mechanism for antibody-antigen recognition. , 1994, Science.

[13]  K. Rajewsky,et al.  A functional antibody mutant with an insertion in the framework region 3 loop of the VH domain: implications for antibody engineering. , 1992, Protein engineering.

[14]  Y. Li,et al.  Structure of a single-chain antibody variable domain (Fv) fragment complexed with a carbohydrate antigen at 1.7-A resolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Brisson,et al.  Solution structure of a trisaccharide-antibody complex: comparison of NMR measurements with a crystal structure. , 1994, Biochemistry.

[16]  Y. Li,et al.  Preparation, characterization and crystallization of an antibody Fab fragment that recognizes RNA. Crystal structures of native Fab and three Fab-mononucleotide complexes. , 1995, Journal of molecular biology.

[17]  G. Winter,et al.  Making antibodies by phage display technology. , 1994, Annual review of immunology.

[18]  Chantal Abergel,et al.  Identification of specificity‐determining residues in antibodies , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  J. Baenziger,et al.  Thermal stabilization of a single‐chain Fv antibody fragment by introduction of a disulphide bond , 1995, FEBS letters.

[20]  J E Collins,et al.  Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. , 1995, Human molecular genetics.

[21]  K. D. Hardman,et al.  1.85 A structure of anti-fluorescein 4-4-20 Fab. , 1995, Protein engineering.

[22]  Tristan J. Vaughan,et al.  Human Antibodies with Sub-nanomolar Affinities Isolated from a Large Non-immunized Phage Display Library , 1996, Nature Biotechnology.

[23]  I M Gelfand,et al.  The invariant system of coordinates of antibody molecules: prediction of the "standard" C alpha framework of VL and VH domains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A T cell receptor V alpha domain expressed in bacteria: does it dimerize in solution? , 1996, The Journal of experimental medicine.

[25]  Robyn L. Stanfield,et al.  An αβ T Cell Receptor Structure at 2.5 Å and Its Orientation in the TCR-MHC Complex , 1996, Science.

[26]  Partho Ghosh,et al.  Structure of the complex between human T-cell receptor, viral peptide and HLA-A2 , 1996, Nature.

[27]  Z. Eshhar,et al.  X-ray structures of a hydrolytic antibody and of complexes elucidate catalytic pathway from substrate binding and transition state stabilization through water attack and product release. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Nieba,et al.  Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. , 1997, Protein engineering.

[29]  J. Fontecilla-Camps,et al.  The three-dimensional structure of a T-cell antigen receptor V alpha V beta heterodimer reveals a novel arrangement of the V beta domain. , 1997, The EMBO journal.

[30]  M. Lefranc,et al.  Unique database numbering system for immunogenetic analysis. , 1997, Immunology today.

[31]  A. Lesk,et al.  Standard conformations for the canonical structures of immunoglobulins. , 1997, Journal of molecular biology.

[32]  A. Plückthun,et al.  Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. , 1997, Protein engineering.

[33]  E. Goldman,et al.  A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. , 1998, Biochemistry.

[34]  Valérie Barbié,et al.  The Human Immunoglobulin Kappa Variable (IGKV) Genes and Joining (IGKJ) Segments , 1998, Experimental and Clinical Immunogenetics.

[35]  D. Wiley,et al.  Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. , 1998, Immunity.

[36]  A. Plückthun,et al.  The nature of antibody heavy chain residue H6 strongly influences the stability of a VH domain lacking the disulfide bridge. , 1998, Journal of molecular biology.

[37]  A. Plückthun,et al.  Reproducing the natural evolution of protein structural features with the selectively infective phage (SIP) technology. The kink in the first strand of antibody kappa domains. , 1998, Journal of molecular biology.

[38]  I. Gelfand,et al.  Geometric invariant core for the V(L) and V(H) domains of immunoglobulin molecules. , 1998, Protein engineering.

[39]  A. D. Clark,et al.  Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. , 1998, Journal of molecular biology.

[40]  A. Smolyar,et al.  Atomic structure of an αβ T cell receptor (TCR) heterodimer in complex with an anti‐TCR Fab fragment derived from a mitogenic antibody , 1998, The EMBO journal.

[41]  A. Plückthun,et al.  Antibody scFv fragments without disulfide bonds made by molecular evolution. , 1998, Journal of molecular biology.

[42]  Marie-Paule Lefranc,et al.  IMGT, the international ImMunoGeneTics database. , 1997, Nucleic acids research.

[43]  AN ALPHA-BETA T CELL RECEPTOR (TCR) HETERODIMER IN COMPLEX WITH AN ANTI-TCR FAB FRAGMENT DERIVED FROM A MITOGENIC ANTIBODY , 1998 .

[44]  Casimir A. Kulikowski,et al.  Algorithmic determination of core positions in the VL and VH domains of immunoglobulin molecules , 1998, RECOMB '98.

[45]  A. Llera,et al.  Structure of the Vδ domain of a human γδ T-cell antigen receptor , 1998, Nature.

[46]  A. Plückthun,et al.  Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Jacobs,et al.  Exceptionally long CDR3H region with multiple cysteine residues in functional bovine IgM antibodies , 1999, European journal of immunology.

[48]  I. Wilson,et al.  Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. , 1999, Structure.

[49]  R. Lerner,et al.  Structural basis for antibody catalysis of a disfavored ring closure reaction. , 1999, Biochemistry.

[50]  I. Tomlinson,et al.  Somatic insertions and deletions shape the human antibody repertoire. , 1999, Journal of molecular biology.

[51]  A. Plückthun,et al.  Selection for improved protein stability by phage display. , 1999, Journal of molecular biology.

[52]  A. Plückthun,et al.  Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. , 2000, Journal of molecular biology.

[53]  A. Plückthun,et al.  Stability engineering of antibody single-chain Fv fragments. , 2001, Journal of molecular biology.

[54]  A. Plückthun,et al.  The influence of the buried glutamine or glutamate residue in position 6 on the structure of immunoglobulin variable domains. , 2001, Journal of molecular biology.

[55]  A. Plückthun,et al.  The importance of framework residues H6, H7 and H10 in antibody heavy chains: experimental evidence for a new structural subclassification of antibody V(H) domains. , 2001, Journal of molecular biology.