Tracking, tuning, and terminating microbial physiology using synthetic riboregulators

The development of biomolecular devices that interface with biological systems to reveal new insights and produce novel functions is one of the defining goals of synthetic biology. Our lab previously described a synthetic, riboregulator system that affords for modular, tunable, and tight control of gene expression in vivo. Here we highlight several experimental advantages unique to this RNA-based system, including physiologically relevant protein production, component modularity, leakage minimization, rapid response time, tunable gene expression, and independent regulation of multiple genes. We demonstrate this utility in four sets of in vivo experiments with various microbial systems. Specifically, we show that the synthetic riboregulator is well suited for GFP fusion protein tracking in wild-type cells, tight regulation of toxic protein expression, and sensitive perturbation of stress response networks. We also show that the system can be used for logic-based computing of multiple, orthogonal inputs, resulting in the development of a programmable kill switch for bacteria. This work establishes a broad, easy-to-use synthetic biology platform for microbiology experiments and biotechnology applications.

[1]  B. Bachmann,et al.  Derivations and genotypes of some mutant derivatives of Escherichia coli K12 , 1987 .

[2]  David R. Liu,et al.  Engineering a ligand-dependent RNA transcriptional activator. , 2004, Chemistry & biology.

[3]  Teruyuki Nagamune,et al.  Design of the linkers which effectively separate domains of a bifunctional fusion protein. , 2001, Protein engineering.

[4]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[5]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[6]  J. Chin,et al.  Synthesis of orthogonal transcription-translation networks , 2009, Proceedings of the National Academy of Sciences.

[7]  M. Kolberg,et al.  Structure, function, and mechanism of ribonucleotide reductases. , 2004, Biochimica et biophysica acta.

[8]  Farren J. Isaacs,et al.  RNA synthetic biology , 2006, Nature Biotechnology.

[9]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[10]  Emily Dimmer,et al.  The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology , 2004, Nucleic Acids Res..

[11]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[12]  Boris Hayete,et al.  Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli , 2007 .

[13]  K. Postle,et al.  TonB-dependent energy transduction between outer and cytoplasmic membranes , 2007, BioMetals.

[14]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[15]  Travis S. Bayer,et al.  Programmable ligand-controlled riboregulators of eukaryotic gene expression , 2005, Nature Biotechnology.

[16]  R. Young,et al.  Cell lysis by induction of cloned lambda lysis genes , 2004, Molecular and General Genetics MGG.

[17]  E. Friedberg,et al.  DNA Repair and Mutagenesis , 2006 .

[18]  M. Guyer The λδ sequence of F is an insertion sequence , 1978 .

[19]  Andrew D Ellington,et al.  Synthetic RNA circuits. , 2007, Nature chemical biology.

[20]  M. Win,et al.  A modular and extensible RNA-based gene-regulatory platform for engineering cellular function , 2007, Proceedings of the National Academy of Sciences.

[21]  Gregory J. Phillips,et al.  Green Fluorescent Protein Functions as a Reporter for Protein Localization in Escherichia coli , 2000, Journal of bacteriology.

[22]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[23]  R. D'Amato,et al.  Exogenous control of mammalian gene expression through modulation of RNA self-cleavage , 2004, Nature.

[24]  R. Young,et al.  Lethal action of bacteriophage lambda S gene , 1982, Journal of virology.

[25]  Shana Topp,et al.  Riboswitches in unexpected places--a synthetic riboswitch in a protein coding region. , 2008, RNA.

[26]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[27]  G. Church,et al.  Synthetic Gene Networks That Count , 2009, Science.

[28]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[29]  S. Sommer,et al.  SOS induction by thermosensitive replication mutants of miniF plasmid , 2004, Molecular and General Genetics MGG.

[30]  K. Rice,et al.  Molecular Control of Bacterial Death and Lysis , 2008, Microbiology and Molecular Biology Reviews.

[31]  M. Couturier,et al.  Bacterial death by DNA gyrase poisoning. , 1998, Trends in microbiology.

[32]  M. Syvanen,et al.  Transposition mutagenesis of bacteriophage lambda: a new gene affecting cell lysis. , 1979, Journal of molecular biology.

[33]  P. Klebba,et al.  Insight from TonB Hybrid Proteins into the Mechanism of Iron Transport through the Outer Membrane , 2008, Journal of bacteriology.

[34]  M. Ptashne,et al.  RNA sequences that work as transcriptional activating regions. , 2003, Nucleic acids research.

[35]  Martin Fussenegger,et al.  Recent advances in mammalian synthetic biology-design of synthetic transgene control networks. , 2009, Current opinion in biotechnology.

[36]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[37]  T. Ogura,et al.  Effects of the ccd function of the F plasmid on bacterial growth , 1985, Journal of bacteriology.

[38]  Shankar Mukherji,et al.  Synthetic biology: understanding biological design from synthetic circuits , 2009, Nature Reviews Genetics.

[39]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[40]  I. Wang,et al.  Holins: the protein clocks of bacteriophage infections. , 2000, Annual review of microbiology.

[41]  S. Andrews,et al.  Bacterial iron homeostasis. , 2003, FEMS microbiology reviews.

[42]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[43]  S. Kowalczykowski,et al.  Negative co-dominant inhibition of recA protein function. Biochemical properties of the recA1, recA13 and recA56 proteins and the effect of recA56 protein on the activities of the wild-type recA protein function in vitro. , 1993, Journal of molecular biology.

[44]  K. Postle Aerobic regulation of the Escherichia coli tonB gene by changes in iron availability and the fur locus , 1990, Journal of bacteriology.

[45]  T. Miki,et al.  Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins. Antagonistic actions of LetA (CcdA) and LetD (CcdB) proteins. , 1992, The Journal of biological chemistry.

[46]  B. Kline,et al.  Control of the ccd operon in plasmid F , 1989, Journal of bacteriology.

[47]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[48]  J. Courcelle,et al.  Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. , 2001, Genetics.

[49]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[50]  J. W. Little Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. , 1991, Biochimie.

[51]  M. Guyer The gamma delta sequence of F is an insertion sequence. , 1978, Journal of molecular biology.

[52]  D. Mount,et al.  Nucleotide sequence of the lexA gene of Escherichia coli K-12. , 1981, Nucleic acids research.