Control of Ground Interaction at the Zero-Moment Point for Dynamic Control of Humanoid Robots

In order for stable control of humanoid robots, ground contact forces should be properly controlled for compensating the dynamic disturbances caused by unactuated body movement. The stability in the sense of the zero-moment point (ZMP), guaranteeing secure contacts during control, is a necessary condition for stable motion control. Therefore, we propose a method to control the ground interaction at the ZMP, or ZMP interaction in short, by modifying the system reference acceleration. We also show that simultaneous control of the ZMP interaction and the body movements is not allowed in general. Simulation result is provided to corroborate the theoretical result.

[1]  Atsuo Kawamura,et al.  Proposal of biped walking control based on robust hybrid position/force control , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[2]  Konstantin Kondak,et al.  Control and online computation of stable movement for biped robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[3]  Yoshihiko Nakamura,et al.  Making feasible walking motion of humanoid robots from human motion capture data , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Yoshihiko Nakamura,et al.  Whole-body Cooperative Balancing of Humanoid Robot using COG Jacobian , 2002 .

[5]  Jong Hyeon Park,et al.  Impedance control for biped robot locomotion , 2001, IEEE Trans. Robotics Autom..

[6]  Atsuo Takanishi,et al.  Online walking pattern generation for biped humanoid robot with trunk , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[8]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[9]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Shuuji Kajita,et al.  Pushing manipulation by humanoid considering two-kinds of ZMPs , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[11]  Jonghoon Park,et al.  Multiple tasks kinematics using weighted pseudo-inverse for kinematically redundant manipulators , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[12]  Chi Zhu,et al.  Walking principle analysis for biped robot with ZMP concept, friction constraint, and inverted pendulum model , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[14]  J. Trinkle,et al.  On Dynamic Multi‐Rigid‐Body Contact Problems with Coulomb Friction , 1995 .

[15]  Kazuhisa Mitobe,et al.  Control of walking robots based on manipulation of the zero moment point , 2000, Robotica.

[16]  Jonghoon Park Principle of Dynamical Balance for Multibody Systems , 2005 .

[17]  M. Vukobratovic,et al.  On the stability of anthropomorphic systems , 1972 .

[18]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  Ken Endo,et al.  Realtime ZMP compensation for biped walking robot using adaptive inertia force control , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).