Paley type group schemes and planar Dembowski-Ostrom polynomials

In this paper we give some necessary and sufficient conditions for Dembowski-Ostrom polynomials to be planar. These conditions give a simple explanation of the Coulter-Matthews and Ding-Yin commutative semifields and enable us to obtain permutation polynomials from some of the Zha-Kyureghyan-Wang commutative semifields. We then give a generalization of Feng's construction of Paley type group schemes in extra-special p-groups of exponent p and construct a family of Paley type group schemes in what we call the flag groups of finite fields. We also determine the strong multiplier groups of these group schemes. In the last section of this paper, we give a straightforward generalization of the twin prime power construction of difference sets to a construction of Hadamard designs from twin Paley type association schemes.

[1]  Alexander Pott,et al.  Finite Geometry and Character Theory , 1995 .

[2]  James A. Davis,et al.  A Family of Partial Difference Sets with Denniston Parameters in Nonelementary Abelian 2-Groups , 2000, Eur. J. Comb..

[3]  Yu Qing Chen,et al.  Divisible designs and semi-regular relative difference sets from additive Hadamard cocycles , 2011, J. Comb. Theory, Ser. A.

[4]  P. Dembowski,et al.  Planes of ordern with collineation groups of ordern2 , 1968 .

[5]  Qing Xiang,et al.  An exponent bound on skew Hadamard abelian difference sets , 1994, Des. Codes Cryptogr..

[6]  L. Dickson The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group. , 1896 .

[7]  Qing Xiang,et al.  Constructions of Partial Difference Sets and Relative Difference Sets Using Galois Rings II , 1996, J. Comb. Theory, Ser. A.

[8]  Cunsheng Ding,et al.  A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.

[9]  John B. Polhill,et al.  Negative Latin square type partial difference sets and amorphic association schemes with Galois rings , 2009 .

[10]  Cunsheng Ding,et al.  Skew Hadamard difference sets from the Ree-Tits slice symplectic spreads in PG(3, 32h+1) , 2007, J. Comb. Theory, Ser. A.

[11]  D. R. Hughes Partial Difference Sets , 1956 .

[12]  John B. Polhill Paley type partial difference sets in non p-groups , 2009, Des. Codes Cryptogr..

[13]  Kathy J. Horadam,et al.  Relative difference sets fixed by inversion (III) - Cocycle theoretical approach , 2008, Discret. Math..

[14]  Paul Camion,et al.  Antisymmetric difference sets , 1972 .

[15]  John B. Polhill Generalizations of Partial Difference Sets from Cyclotomy to Nonelementary Abelian p-Groups , 2008, Electron. J. Comb..

[16]  J. Davis Partial difference sets inp-groups , 1994 .

[17]  Yutaka Hiramine Automorphisms of $p$-groups of semifield type , 1983 .

[18]  Xiang-Dong Hou,et al.  New partial difference sets in p‐groups , 2002 .

[19]  Xiang-dong Hou,et al.  A construction of finite Frobenius rings and its application to partial difference sets , 2007 .

[20]  Xueli Wang,et al.  Perfect nonlinear binomials and their semifields , 2009, Finite Fields Their Appl..

[21]  Tao Feng Non-abelian skew Hadamard difference sets fixed by a prescribed automorphism , 2011, J. Comb. Theory, Ser. A.

[22]  Siu Lun Ma,et al.  Constructions of Partial Difference Sets and Relative Difference Sets on p-Groups , 1990 .

[23]  R. G. Stanton,et al.  A family of difference sets , 1958 .

[24]  Xiang-Dong Hou,et al.  Rings and constructions of partial difference sets , 2003, Discret. Math..

[25]  Siu Lun Ma,et al.  A survey of partial difference sets , 1994, Des. Codes Cryptogr..

[26]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[27]  John B. Polhill Constructions of Nested Partial Difference Sets with Galois Rings , 2002, Des. Codes Cryptogr..

[28]  John B. Polhill Paley partial difference sets in groups of order n4 and 9n4 for any odd n>1 , 2010, J. Comb. Theory, Ser. A.

[29]  John B. Polhill New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups , 2008, Des. Codes Cryptogr..

[30]  H. B. Mann Difference sets in elementary abelian groups , 1965 .

[31]  W. Kantor Finite semifields , 2005 .

[32]  Cai Heng Li,et al.  Relative difference sets fixed by inversion and Cayley graphs , 2005, J. Comb. Theory, Ser. A.

[33]  E. C Johnsen,et al.  Skew-hadamard abelian group difference sets , 1966 .

[34]  S. Lang Number Theory III , 1991 .

[35]  William M. Kantor 2-Transitive symmetric designs , 1969 .

[36]  Qing Xiang,et al.  Pseudo-Paley graphs and skew Hadamard difference sets from presemifields , 2007, Des. Codes Cryptogr..

[37]  Qing Xiang Note on Paley type partial difference sets , 1996 .

[38]  Jürgen Bierbrauer New semifields, PN and APN functions , 2010, Des. Codes Cryptogr..

[39]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[40]  R. Paley On Orthogonal Matrices , 1933 .

[41]  Siu Lun Ma,et al.  Partial Difference Sets with Paley Parameters , 1995 .

[42]  Dieter Jungnickel,et al.  Some geometric aspects of finite abelian group , 2006 .

[43]  Hanfried Lenz,et al.  Design theory , 1985 .

[44]  James A. Davis,et al.  Negative Latin Square type Partial Difference Sets in Nonelementary Abelian 2‐Groups , 2004 .

[45]  D. Knuth Finite semifields and projective planes , 1965 .