A time-domain nonlinear system identification method based on multiscale dynamic partitions
暂无分享,去创建一个
Alexander F. Vakakis | Lawrence A. Bergman | D. Michael McFarland | Stylianos Tsakirtzis | A. Vakakis | L. Bergman | D. McFarland | Y. S. Lee | Young S. Lee | S. Tsakirtzis
[1] Alexander F. Vakakis,et al. Physics-Based Foundation for Empirical Mode Decomposition , 2009 .
[2] Sami F. Masri,et al. Development of data-based model-free representation of non-conservative dissipative systems , 2007 .
[3] K. Worden,et al. Past, present and future of nonlinear system identification in structural dynamics , 2006 .
[4] R. Sharpley,et al. Analysis of the Intrinsic Mode Functions , 2006 .
[5] D. M. McFarland,et al. Triggering mechanisms of limit cycle oscillations due to aeroelastic instability , 2005 .
[6] Alexander F. Vakakis,et al. Irreversible Passive Energy Transfer in Coupled Oscillators with Essential Nonlinearity , 2005, SIAM J. Appl. Math..
[7] Andrew W. Smyth,et al. A General Data-Based Approach for Developing Reduced-Order Models of Nonlinear MDOF Systems , 2005 .
[8] W. Silva,et al. Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities , 2005 .
[9] Gabriel Rilling,et al. On empirical mode decomposition and its algorithms , 2003 .
[10] R. D'Andrea,et al. Nonlinear System Identification of Multi-Degree-of-Freedom Systems , 2003 .
[11] Leonid I. Manevitch,et al. The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables , 2001 .
[12] Leonid I. Manevitch,et al. Complex Representation of Dynamics of Coupled Nonlinear Oscillators , 1999 .
[13] N. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[14] Bart De Moor,et al. A unifying theorem for three subspace system identification algorithms , 1995, Autom..
[15] Michael Feldman,et al. Non-linear system vibration analysis using Hilbert transform--II. Forced vibration analysis method 'Forcevib' , 1994 .
[16] Michael Feldman,et al. Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method 'Freevib' , 1994 .
[17] C. Meunier,et al. Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .
[18] C. Meunier,et al. Multiphase Averaging for Classical Systems , 1988 .
[19] Sami F. Masri,et al. Identification of Nonlinear Vibrating Structures: Part II—Applications , 1987 .
[20] Sami F. Masri,et al. Identification of nonlinear vibrating structures: Part I -- Formulation , 1987 .
[21] Jer-Nan Juang,et al. An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .
[22] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[23] D. J. Ewins,et al. Modal Testing: Theory and Practice , 1984 .
[24] 鈴木 増雄. A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .
[25] Sami F. Masri,et al. A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .
[26] R. B. Spencer,et al. A TIME DOMAIN MODAL VIBRATION TEST TECHNIQUE Ibrahim, S. R. and Mikulcik, E. C. U. S. Naval Res. Lab., Shock Vib. Bull. 43 (4), 21-37 (July 1973) 23 refs Refer to Abstract No. 73-1618 , 1974 .
[27] E. Bedrosian. A Product Theorem for Hilbert Transforms , 1963 .