A time-domain nonlinear system identification method based on multiscale dynamic partitions

[1]  Alexander F. Vakakis,et al.  Physics-Based Foundation for Empirical Mode Decomposition , 2009 .

[2]  Sami F. Masri,et al.  Development of data-based model-free representation of non-conservative dissipative systems , 2007 .

[3]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[4]  R. Sharpley,et al.  Analysis of the Intrinsic Mode Functions , 2006 .

[5]  D. M. McFarland,et al.  Triggering mechanisms of limit cycle oscillations due to aeroelastic instability , 2005 .

[6]  Alexander F. Vakakis,et al.  Irreversible Passive Energy Transfer in Coupled Oscillators with Essential Nonlinearity , 2005, SIAM J. Appl. Math..

[7]  Andrew W. Smyth,et al.  A General Data-Based Approach for Developing Reduced-Order Models of Nonlinear MDOF Systems , 2005 .

[8]  W. Silva,et al.  Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities , 2005 .

[9]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[10]  R. D'Andrea,et al.  Nonlinear System Identification of Multi-Degree-of-Freedom Systems , 2003 .

[11]  Leonid I. Manevitch,et al.  The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables , 2001 .

[12]  Leonid I. Manevitch,et al.  Complex Representation of Dynamics of Coupled Nonlinear Oscillators , 1999 .

[13]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[15]  Michael Feldman,et al.  Non-linear system vibration analysis using Hilbert transform--II. Forced vibration analysis method 'Forcevib' , 1994 .

[16]  Michael Feldman,et al.  Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method 'Freevib' , 1994 .

[17]  C. Meunier,et al.  Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .

[18]  C. Meunier,et al.  Multiphase Averaging for Classical Systems , 1988 .

[19]  Sami F. Masri,et al.  Identification of Nonlinear Vibrating Structures: Part II—Applications , 1987 .

[20]  Sami F. Masri,et al.  Identification of nonlinear vibrating structures: Part I -- Formulation , 1987 .

[21]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[22]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[23]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[24]  鈴木 増雄 A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .

[25]  Sami F. Masri,et al.  A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .

[26]  R. B. Spencer,et al.  A TIME DOMAIN MODAL VIBRATION TEST TECHNIQUE Ibrahim, S. R. and Mikulcik, E. C. U. S. Naval Res. Lab., Shock Vib. Bull. 43 (4), 21-37 (July 1973) 23 refs Refer to Abstract No. 73-1618 , 1974 .

[27]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .