Positron emission tomography tracers for imaging angiogenesis

Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or αvβ3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging αvβ3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized.

[1]  David A. Cheresh,et al.  Role of integrins in cell invasion and migration , 2002, Nature Reviews Cancer.

[2]  William R. Wagner,et al.  Targeted In Vivo Labeling of Receptors for Vascular Endothelial Growth Factor , 2003, Circulation.

[3]  H. Wester,et al.  Carbon-11 labelling of an N-sulfonylamino acid derivative: a potential tracer for MMP-2 and MMP-9 imaging , 2003 .

[4]  R. Hynes A reevaluation of integrins as regulators of angiogenesis , 2002, Nature Medicine.

[5]  J. Flynn,et al.  Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. , 1996, Survey of ophthalmology.

[6]  R. Hynes,et al.  Molecular biology of fibronectin. , 1985, Annual review of cell biology.

[7]  G. Hutchins,et al.  Comparative studies of potential cancer biomarkers carbon-11 labeled MMP inhibitors (S)-2-(4'-[11C]methoxybiphenyl-4-sulfonylamino)-3-methylbutyric acid and N-hydroxy-(R)-2-[[(4'-[11C]methoxyphenyl)sulfonyl]benzylamino]-3-methylbutanamide. , 2004, Nuclear medicine and biology.

[8]  Per E M Siegbahn,et al.  Catalytic mechanism of matrix metalloproteinases: two-layered ONIOM study. , 2002, Inorganic chemistry.

[9]  A. Skretting,et al.  Integrin scintimammography using a dedicated breast imaging, solid‐state γ‐camera and 99mTc‐labelled NC100692 , 2008, Clinical physiology and functional imaging.

[10]  Timo Sorsa,et al.  Tumor targeting with a selective gelatinase inhibitor , 1999, Nature Biotechnology.

[11]  Arwin J. Brouwer,et al.  Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. , 2007, Organic & biomolecular chemistry.

[12]  W. Schima,et al.  Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. , 2004, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[13]  L. Rosen,et al.  Antiangiogenic strategies and agents in clinical trials. , 2000, The oncologist.

[14]  L. Sancey,et al.  In vivo imaging of tumour angiogenesis in mice with the αvβ3 integrin-targeted tracer 99mTc-RAFT-RGD , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  Jamal Zweit,et al.  Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. , 2002, Journal of the National Cancer Institute.

[16]  Marina V Backer,et al.  Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes , 2007, Nature Medicine.

[17]  S. Gambhir,et al.  Quantitative PET Imaging of Tumor Integrin αvβ3 Expression with 18F-FRGD2 , 2006 .

[18]  A. Dalgleish,et al.  Recent developments in antiangiogenic therapy , 2002, Expert opinion on biological therapy.

[19]  Masakazu Toi,et al.  Angiogenic inhibitors: a new therapeutic strategy in oncology , 2005, Nature Clinical Practice Oncology.

[20]  A. Noël,et al.  Synthesis, radiosynthesis, in vitro and preliminary in vivo evaluation of biphenyl carboxylic and hydroxamic matrix metalloproteinase (MMP) inhibitors as potential tumor imaging agents. , 2005, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[21]  Dario Neri,et al.  Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[22]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[23]  M. Welch,et al.  Small-Animal PET of Tumor Angiogenesis Using a 76Br-Labeled Human Recombinant Antibody Fragment to the ED-B Domain of Fibronectin , 2007, Journal of Nuclear Medicine.

[24]  M. Schwaiger,et al.  Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation , 2004 .

[25]  E. Chavakis,et al.  Kinetics of integrin expression in the mouse model of proliferative retinopathy and success of secondary intervention with cyclic RGD peptides , 2002, Diabetologia.

[26]  M. Ocker,et al.  Labeling and glycosylation of peptides using click chemistry: a general approach to (18)F-glycopeptides as effective imaging probes for positron emission tomography. , 2010, Angewandte Chemie.

[27]  W. Cai,et al.  64Cu-Labeled Tetrameric and Octameric RGD Peptides for Small-Animal PET of Tumor αvβ3 Integrin Expression , 2007, Journal of Nuclear Medicine.

[28]  W. Oyen,et al.  Imaging liver metastases of colorectal cancer patients with radiolabelled bevacizumab: Lack of correlation with VEGF-A expression. , 2008, European journal of cancer.

[29]  J. Bading,et al.  Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. , 2004, Nuclear medicine and biology.

[30]  A. Cuthbertson,et al.  Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18F]fluorinated aldehyde-containing prosthetic groups. , 2008, Bioconjugate chemistry.

[31]  S. Mousa,et al.  Selective alpha(v)beta(3)-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. , 2001, Circulation.

[32]  C. Anderson,et al.  Targeting the αvβ3 Integrin for Small-Animal PET/CT of Osteolytic Bone Metastases , 2009, Journal of Nuclear Medicine.

[33]  S. Goodman,et al.  Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. , 1999, The Journal of clinical investigation.

[34]  Horst Kessler,et al.  Positron Emission Tomography Using [18F]Galacto-RGD Identifies the Level of Integrin αvβ3 Expression in Man , 2006, Clinical Cancer Research.

[35]  W. Cai,et al.  18F-Labeled mini-PEG spacered RGD dimer (18F-FPRGD2): Synthesis and microPET imaging of {alpha}v{beta}3 integrin expression , 2007 .

[36]  Ralf Schirrmacher,et al.  Synthesis of p-(di-tert-butyl[(18)F]fluorosilyl)benzaldehyde ([(18)F]SiFA-A) with high specific activity by isotopic exchange: a convenient labeling synthon for the (18)F-labeling of N-amino-oxy derivatized peptides. , 2007, Bioconjugate chemistry.

[37]  E. Voest,et al.  The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway. , 2008, Current clinical pharmacology.

[38]  M. Schwaiger,et al.  Targeting of gelatinase activity with a radiolabeled cyclic HWGF peptide. , 2004, Nuclear medicine and biology.

[39]  J. Foidart,et al.  New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents. , 2004, Nuclear medicine and biology.

[40]  S. Goodman,et al.  Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist , 1999 .

[41]  Weibo Cai,et al.  A Thiol-Reactive 18F-Labeling Agent, N-[2-(4-18F-Fluorobenzamido)Ethyl]Maleimide, and Synthesis of RGD Peptide-Based Tracer for PET Imaging of αvβ3 Integrin Expression , 2006 .

[42]  Horst Kessler,et al.  Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. , 2003, Chemistry.

[43]  Amir Kashefi,et al.  A new PET tracer specific for vascular endothelial growth factor receptor 2 , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[44]  A. Cuthbertson,et al.  NC-100717: a versatile RGD peptide scaffold for angiogenesis imaging. , 2006, Bioorganic & medicinal chemistry letters.

[45]  S. Gambhir,et al.  microPET Imaging of Glioma Integrin αvβ3 Expression Using 64Cu-Labeled Tetrameric RGD Peptide , 2005 .

[46]  Ryan Park,et al.  MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. , 2004, Bioconjugate chemistry.

[47]  L. Sancey,et al.  In vivo imaging of tumour angiogenesis in mice with the alpha(v)beta (3) integrin-targeted tracer 99mTc-RAFT-RGD. , 2007, European journal of nuclear medicine and molecular imaging.

[48]  G. Hutchins,et al.  Synthesis and preliminary biological evaluation of MMP inhibitor radiotracers [11C]methyl-halo-CGS 27023A analogs, new potential PET breast cancer imaging agents. , 2002, Nuclear medicine and biology.

[49]  J. M. Harris,et al.  Effect of pegylation on pharmaceuticals , 2003, Nature Reviews Drug Discovery.

[50]  Horst Kessler,et al.  Two-step methodology for high-yield routine radiohalogenation of peptides: (18)F-labeled RGD and octreotide analogs. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[51]  D. Gomez,et al.  Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. , 1997, European journal of cell biology.

[52]  Stanley J. Wiegand,et al.  Vascular-specific growth factors and blood vessel formation , 2000, Nature.

[53]  Sanjiv S Gambhir,et al.  PET of vascular endothelial growth factor receptor expression. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[54]  H. Wester,et al.  18F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK) , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[55]  Xiaoyuan Chen,et al.  PET Imaging of Angiogenesis. , 2009, PET clinics.

[56]  S. Furumoto,et al.  Design and synthesis of fluorine‐18 labeled matrix metalloproteinase inhibitors for cancer imaging , 2002 .

[57]  Stefanie Mandl,et al.  Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[58]  Vimalkumar A. Patel,et al.  In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[59]  Dario Neri,et al.  Targeting by affinity–matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform , 1997, Nature Biotechnology.

[60]  M. Schwaiger,et al.  Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. , 2001, Cancer research.

[61]  S. Gambhir,et al.  microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[62]  Ciprian Catana,et al.  Simultaneous PET-MRI: a new approach for functional and morphological imaging , 2008, Nature Medicine.

[63]  V. Kähäri,et al.  Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets , 2002, International journal of cancer.

[64]  M. Schwaiger,et al.  Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[65]  G. Hutchins,et al.  Synthesis of radiolabeled biphenylsulfonamide matrix metalloproteinase inhibitors as new potential PET cancer imaging agents. , 2003, Bioorganic & medicinal chemistry letters.

[66]  D. Cheresh,et al.  Integrin α v β 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels , 1994, Cell.

[67]  K. Garcia,et al.  The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. , 2000, The Journal of biological chemistry.

[68]  R. Timpl,et al.  Arg‐Gly‐Asp constrained within cyclic pentapoptides Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1 , 1991, FEBS letters.

[69]  B. Keyt,et al.  Identification of Vascular Endothelial Growth Factor Determinants for Binding KDR and FLT-1 Receptors , 1996, The Journal of Biological Chemistry.

[70]  Martin Vanderlaan,et al.  Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro , 2004, Angiogenesis.

[71]  Horst Kessler,et al.  Solid-Phase Synthesis of a Nonpeptide RGD Mimetic Library: New Selective αvβ3 Integrin Antagonists , 2001 .

[72]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[73]  Peter S. Conti,et al.  Pegylated Arg-Gly-Asp Peptide: 64Cu Labeling and PET Imaging of Brain Tumor αvβ3-Integrin Expression , 2004 .

[74]  W. Cai,et al.  64Cu-Labeled tetrameric and octameric RGD peptides for microPET imaging of tumor {alpha}v{beta}3 integrin expression , 2007 .

[75]  P. Angelberger,et al.  Imaging gastrointestinal tumours using vascular endothelial growth factor-165 (VEGF165) receptor scintigraphy. , 2003, Annals of oncology : official journal of the European Society for Medical Oncology.

[76]  P. Yalamanchili,et al.  Structure-activity relationships of 111In- and 99mTc-labeled quinolin-4-one peptidomimetics as ligands for the vitronectin receptor: potential tumor imaging agents. , 2006, Bioconjugate chemistry.

[77]  John Ellingboe,et al.  Synthesis and structure-activity relationship of N-substituted 4-arylsulfonylpiperidine-4-hydroxamic acids as novel, orally active matrix metalloproteinase inhibitors for the treatment of osteoarthritis. , 2003, Journal of medicinal chemistry.

[78]  D. Cheresh,et al.  Role of alpha v integrins during angiogenesis. , 2000, Cancer journal.

[79]  G. Hutchins,et al.  Synthesis of MMP inhibitor radiotracer [11C]CGS 25966, a new potential pet tumor imaging agent , 2003 .

[80]  J. Lee,et al.  First in human evaluation of a newly developed integrin binding PET tracer, 18F-RGD-K5 in patients with breast cancer: Comparison with 18F-FDG uptake pattern and microvessel density , 2009 .

[81]  J. Bading,et al.  Micro-PET Imaging of αvβ3-Integrin Expression with 18F-Labeled Dimeric RGD Peptide , 2004 .

[82]  S. Luthra,et al.  Methods for 18F-labeling of RGD peptides: comparison of aminooxy [18F]fluorobenzaldehyde condensation with ‘click labeling’ using 2-[18F]fluoroethylazide, and S-alkylation with [18F]fluoropropanethiol , 2009, Amino Acids.

[83]  Young Joo Kim,et al.  An improved method of 18F peptide labeling: hydrazone formation with HYNIC-conjugated c(RGDyK). , 2006, Nuclear medicine and biology.

[84]  L. Dinkelborg,et al.  Radioimmunotherapy of Solid Tumors by Targeting Extra Domain B Fibronectin: Identification of the Best-Suited Radioimmunoconjugate , 2005, Clinical Cancer Research.

[85]  A. Bikfalvi,et al.  Target molecules for anti-angiogenic therapy: from basic research to clinical trials. , 2000, Critical reviews in oncology/hematology.

[86]  C. Jackson,et al.  Human endothelial gelatinases and angiogenesis. , 2001, The international journal of biochemistry & cell biology.

[87]  A. Hui,et al.  The Biodistribution and Radiation Dosimetry of the Arg-Gly-Asp Peptide 18F-AH111585 in Healthy Volunteers , 2008, Journal of Nuclear Medicine.

[88]  L. Zardi,et al.  Selective targeting of tumoral vasculature: Comparison of different formats of an antibody (L19) to the ED‐B domain of fibronectin , 2002, International journal of cancer.

[89]  Jean Tessier,et al.  Use of a Novel Arg-Gly-Asp Radioligand, 18F-AH111585, to Determine Changes in Tumor Vascularity After Antitumor Therapy , 2008, Journal of Nuclear Medicine.

[90]  F. Sarkar,et al.  Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. , 1995, The Journal of clinical investigation.

[91]  M. Schwaiger,et al.  Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. , 2009, Neuro-oncology.

[92]  Milind Rajopadhye,et al.  Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. , 2002, Cancer research.

[93]  M. Schwaiger,et al.  [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. , 2004, Bioconjugate chemistry.

[94]  G. Viale,et al.  The Angiogenesis Marker ED-B+ Fibronectin Isoform in Intracranial Meningiomas , 2000, Acta Neurochirurgica.

[95]  Napoleone Ferrara,et al.  Vascular endothelial growth factor: basic science and clinical progress. , 2004, Endocrine reviews.

[96]  Manuel Hidalgo,et al.  Development of matrix metalloproteinase inhibitors in cancer therapy. , 2002, Hematology/oncology clinics of North America.

[97]  R. Boisgard,et al.  Fluorine‐18 labelling of oligonucleotides: Prosthetic labelling at the 5′‐end using the N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide reagent , 2003 .

[98]  G. Hutchins,et al.  Synthesis, biodistribution and micro-PET imaging of a potential cancer biomarker carbon-11 labeled MMP inhibitor (2R)-2-[[4-(6-fluorohex-1-ynyl)phenyl]sulfonylamino]-3-methylbutyric acid [11C]methyl ester. , 2003, Nuclear medicine and biology.

[99]  D. Creamer,et al.  Angiogenesis in psoriasis , 2004, Angiogenesis.

[100]  A. Noël,et al.  Tryptophane-based biphenylsulfonamide matrix metalloproteinase inhibitors as tumor imaging agents. , 2005, Cancer biotherapy & radiopharmaceuticals.

[101]  L. Dinkelborg,et al.  HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY A High-Affinity Human Antibody That Targets Tumoral Blood Vessels , 1999 .

[102]  A. Matter,et al.  Tumor angiogenesis as a therapeutic target. , 2001, Drug discovery today.

[103]  J. Park,et al.  The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. , 1993, Molecular biology of the cell.

[104]  P. Carmeliet,et al.  Development of targeted angiogenic medicine , 2009, Journal of thrombosis and haemostasis : JTH.

[105]  K. Weinberg,et al.  αv‐Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin , 2002, International journal of cancer.

[106]  M. Schwaiger,et al.  PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[107]  D. Cheresh,et al.  Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. , 1994, Cell.

[108]  Kai Chen,et al.  18F-Labeled Galacto and PEGylated RGD Dimers for PET Imaging of αvβ3 Integrin Expression , 2010, Molecular Imaging and Biology.

[109]  C. Decristoforo,et al.  68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[110]  W. Oyen,et al.  Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. , 2002, Cancer biotherapy & radiopharmaceuticals.

[111]  G. Hutchins,et al.  Synthesis of MMP inhibitor radiotracers [11C]methyl-CGS 27023A and its analogs, new potential PET breast cancer imaging agents , 2002 .

[112]  E. Ruoslahti Specialization of tumour vasculature , 2002, Nature Reviews Cancer.

[113]  Markus Schwaiger,et al.  [18F]Galacto-RGD Positron Emission Tomography for Imaging of αvβ3 Expression on the Neovasculature in Patients with Squamous Cell Carcinoma of the Head and Neck , 2007, Clinical Cancer Research.

[114]  E Ruoslahti,et al.  New perspectives in cell adhesion: RGD and integrins. , 1987, Science.

[115]  H. Kolb,et al.  18F-RGD-K5: A cyclic triazole-bearing RGD peptide for imaging integrin αvβ3 expression in vivo , 2009 .

[116]  Roy Bicknell,et al.  The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. , 2002, Cancer research.

[117]  Angiogenesis factors. , 2001, Internal medicine.

[118]  F. Blankenberg,et al.  Direct site-specific labeling of the Cys-tag moiety in scVEGF with technetium 99m. , 2008, Bioconjugate chemistry.

[119]  C. R. Leemans,et al.  124I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of 131I-L19-SIP radioimmunotherapy , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[120]  Philippe Shubik,et al.  VEGF and the quest for tumour angiogenesis factors , 2022 .

[121]  W. Cai,et al.  18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[122]  Matthias Glaser,et al.  Phase I Trial of the Positron-Emitting Arg-Gly-Asp (RGD) Peptide Radioligand 18F-AH111585 in Breast Cancer Patients , 2008, Journal of Nuclear Medicine.

[123]  J. M. Harris,et al.  Pegylation: a novel process for modifying pharmacokinetics. , 2001, Clinical pharmacokinetics.

[124]  Ryan Park,et al.  Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. , 2004, Molecular imaging.

[125]  M Schwaiger,et al.  Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[126]  Y. Okada,et al.  Production of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Human Breast Carcinomas , 1996, Japanese journal of cancer research : Gann.

[127]  Young Joo Kim,et al.  Preparation of a Promising Angiogenesis PET Imaging Agent: 68Ga-Labeled c(RGDyK)–Isothiocyanatobenzyl-1,4,7-Triazacyclononane-1,4,7-Triacetic Acid and Feasibility Studies in Mice , 2008, Journal of Nuclear Medicine.

[128]  Ryan Park,et al.  MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[129]  P. Valent,et al.  Characterization of 123I‐vascular endothelial growth factor–binding sites expressed on human tumour cells: Possible implication for tumour scintigraphy , 2001, International journal of cancer.

[130]  J. Rundhaug,et al.  Matrix metalloproteinases and angiogenesis , 2005, Journal of cellular and molecular medicine.

[131]  Xiaoyuan Chen,et al.  Advances in Anatomic, Functional, and Molecular Imaging of Angiogenesis , 2008, Journal of Nuclear Medicine.

[132]  J. Folkman Role of angiogenesis in tumor growth and metastasis. , 2002, Seminars in oncology.

[133]  Kai Chen,et al.  Positron Emission Tomography Imaging of Poststroke Angiogenesis , 2009, Stroke.

[134]  J. Bading,et al.  Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[135]  H. Hollema,et al.  In Vivo VEGF Imaging with Radiolabeled Bevacizumab in a Human Ovarian Tumor Xenograft , 2007, Journal of Nuclear Medicine.

[136]  Weibo Cai,et al.  A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of alpha v beta 3 integrin expression. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[137]  J. Reubi,et al.  NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. , 2002, Bioconjugate chemistry.

[138]  P. Gmeiner,et al.  3,4,6-Tri-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranosyl phenylthiosulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides. , 2007, Bioconjugate chemistry.

[139]  L. Ellis,et al.  Synopsis of angiogenesis inhibitors in oncology. , 2002, Oncology.

[140]  R K Jain,et al.  Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[141]  K. Holme,et al.  Matrix metalloproteinase inhibitors: a structure-activity study. , 1998, Journal of medicinal chemistry.

[142]  R. Hynes,et al.  Integrins in vascular development. , 1999, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[143]  F. Blankenberg,et al.  Noninvasive assessment of tumor VEGF receptors in response to treatment with pazopanib: a molecular imaging study. , 2010, Translational oncology.

[144]  Peter S. Conti,et al.  MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[145]  S. Curran,et al.  Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. , 2000, European journal of cancer.

[146]  H. Tsuzuki,et al.  Homology modeling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. , 1999, Journal of medicinal chemistry.

[147]  S. Zucker,et al.  Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. , 2001, Drug discovery today.

[148]  Sibylle Ziegler,et al.  Noninvasive Imaging of αvβ3 Integrin Expression Using 18F-labeled RGD-containing Glycopeptide and Positron Emission Tomography , 2001 .

[149]  J. Willmann,et al.  Imaging of VEGF Receptor in a Rat Myocardial Infarction Model Using PET , 2008, Journal of Nuclear Medicine.

[150]  M. Schwaiger,et al.  Radiotracer-based strategies to image angiogenesis. , 2003, The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology.