Design of firefly power system stabilizer for stability improvement of multi machine system under contingency

Interconnected power system is the complex system which is having the stability maintenance as the important factor to be in the synchronism with respect to all generators connected to the system. To maintain the synchronism among all generators and loads that are interconnected, the stability of each individual machine and also the stability of interconnected machines have gained importance. Damping torque adjustment or sufficient supply of the damping torque to the synchronous machine which will increase the stability of the system is done by applying the power system stabilizer. This paper presents an attempt to design the power system stabilizer using the Firefly search Algorithm to increase the stability of the three machine nine bus system which is an interconnected system of hydro thermal generators. The enhanced stability of the multi machine system was compared with Genetic search Algorithm stabilizer. It is evident that the enhancement of the stability of the multi machine system is achieved by getting the stable Eigen values. It is also observed that the responses of relative variations of interconnected states of the multi machine system with under the nonlinearity condition. The responses of the system with firefly based power system stabilizer are settled at faster rate for the normal case and also for the contingency cases. The results are compared with the genetic algorithm stabilizer. In the Pseudo Spectrum observation the stable poles of the system are evident for the improved stability of the multi machine system. RÉSUMÉ. Le système électrique interconnecté est un système complexe dont le maintien de la stabilité est le facteur important du synchronisme par rapport à tous les générateurs connectés au système. Afin de maintenir le synchronisme parmi tous les générateurs et toutes les charges interconnectées, la stabilité de chaque machine individuelle ainsi que la stabilité des machines interconnectées sont importante. Le réglage du couple d'amortissement ou la fourniture suffisante du couple d'amortissement à la machine synchrone, ce qui augmente la stabilité du système, est effectué en appliquant le stabilisateur du système d'alimentation. Cet article présente une tentative de conception de ce stabilisateur en utilisant l’algorithme de recherche «Firefly » afin d’accroître la stabilité du système de « three machine nine bus » , qui est un système interconnecté de générateurs hydro-thermiques. La stabilité améliorée du système multi-machine a été comparée avec le stabilisateur d'algorithme de recherche 270 EJEE. Volume 19 – n° 5-6/2017 génétique. Il est évident que l'amélioration de la stabilité du système multi-machine est réalisée en obtenant des valeurs propres Eigen. Il montre également les réponses des variations relatives des états interconnectés du système multi-machine soumis dans la condition non-linéaire. Les réponses du stabilisateur de système d'alimentation « Firefly » sont réglées plus rapidement pour le cas normal et aussi pour les cas de contigence. Les résultats sont comparés au stabilisant de l’algorithme génétique. Dans l'observation Pseudo Spectrum, les pôles stables du système sont évidents pour améliorer la stabilité du système multi-machine.

[1]  W. D. Humpage,et al.  Application of dynamic optimisation to synchronous-generator excitation controllers , 1973 .

[2]  Yao-nan Yu,et al.  Optimal Power System Stabilization Through Excitation and/or Governor Control , 1972 .

[3]  Yao-nan Yu,et al.  Dynamic Interaction of Multi-Machine Power System and Excitation Control , 1974 .

[4]  Kwang Y. Lee,et al.  A decentralized controller design for a power plant using robust local controllers and functional mapping , 1996 .

[5]  E. Babaei,et al.  Design of robust power system stabilizer based on PSO , 2009, 2009 IEEE Symposium on Industrial Electronics & Applications.

[6]  Yao-nan Yu,et al.  Application of an Optimal Control Theory to a Power System , 1970 .

[7]  J. H. Anderson,et al.  The control of a synchronous machine using optimal control theory , 1971 .

[8]  Yao-nan Yu,et al.  Optimal Stabilization of a Multi-Machine System , 1972 .

[9]  R.J. Fleming,et al.  Selection of Parameters of Stabilizers in Multimachine Power Systems , 1981, IEEE Transactions on Power Apparatus and Systems.

[10]  Ferber R. Schleif,et al.  Control of Rotating Exciters for Power System Damping: Pilot Applications and Experience , 1969 .

[11]  Kankar Bhattacharya,et al.  Lyapunov's method based genetic algorithm for multi-machine PSS tuning , 2002, 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309).

[12]  O. Malik,et al.  A fuzzy logic based stabilizer for a synchronous machine , 1991 .

[13]  Yao-nan Yu,et al.  Stabilization and Optimal Control Signals for a Power System , 1971 .

[14]  Farzan Rashidi,et al.  Tuning of Power System Stabilizers via Genetic Algorithm for Stabilization of Power Systems , 2004, IEA/AIE.

[15]  M. Abdullah Khan,et al.  Small signal stability enhancement of a multi-machine power system using robust and adaptive fuzzy neural network-based power system stabilizer , 2009 .

[16]  Gurunath Gurrala,et al.  Power System Stabilizers Design for Interconnected Power Systems , 2010, IEEE Transactions on Power Systems.

[17]  K. R. McClymont,et al.  Effect of High-Speed Rectifier Excitation Systems on Generator Stability Limits , 1968 .

[18]  Pallavi Choudekar,et al.  Power flow study and contingency status of WSCC 9 Bus test system using MATLAB , 2015, 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE).