Quantum harmonic oscillator state synthesis by reservoir engineering

Engineering a shelter for quantum protection In isolation, quantum states of matter can be stable entities. These states are often seen as useful when they can be made to interact in a controlled way. However, those interactions and the unavoidable interactions with their environment often correlate with decoherence and eventual loss of the quantum state. Kienzler et al. show that they can engineer the interactions between a quantum system (a trapped ion) and the environment to prepare stable quantum states. The generality of the technique implies applications for other interacting quantum systems. Science, this issue p. 53 Engineering the interactions between a quantum system and its environment leads to stable quantum states. The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems.

[1]  V. Negnevitsky,et al.  Spin–motion entanglement and state diagnosis with squeezed oscillator wavepackets , 2014, Nature.

[2]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[3]  C. Monroe,et al.  Decoherence and Decay of Motional Quantum States of a Trapped Atom Coupled to Engineered Reservoirs , 2000 .

[4]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[5]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[6]  Coherent Control Laser System for the Quantum State Manipulation of Trapped Ions , 2013 .

[7]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[8]  L. Frunzio,et al.  Autonomously stabilized entanglement between two superconducting quantum bits , 2013, Nature.

[9]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[10]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[11]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[12]  John L. Hall,et al.  Nobel Prize for Physics , 1937, Nature.

[13]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[14]  Wojciech H. Zurek,et al.  Sympathetic cooling of trapped ions for quantum logic , 2000 .

[15]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[16]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[17]  P. Rouchon,et al.  Stabilization of nonclassical states of the radiation field in a cavity by reservoir engineering. , 2011, Physical review letters.

[18]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[19]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[20]  L. Davidovich,et al.  Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps , 1997 .

[21]  Juan José García-Ripoll,et al.  Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics. , 2014, Physical review letters.

[22]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[23]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[24]  F. Schmidt-Kaler,et al.  Dynamics and control of fast ion crystal splitting in segmented Paul traps , 2014, 1403.0097.

[25]  L. Davidovich,et al.  Decoherence, pointer engineering, and quantum state protection. , 2001, Physical review letters.

[26]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[27]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[28]  T. Monz,et al.  Realization of universal ion-trap quantum computation with decoherence-free qubits. , 2009, Physical review letters.

[29]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[30]  K. Mølmer,et al.  SPIN-SPIN INTERACTION AND SPIN SQUEEZING IN AN OPTICAL LATTICE , 1999, quant-ph/9903044.

[31]  Blatt,et al.  "Dark" squeezed states of the motion of a trapped ion. , 1993, Physical review letters.

[32]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[33]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[34]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[36]  A. Wunsche Displaced Fock states and their connection to quasiprobabilities , 1991 .

[37]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[38]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[39]  D. Leibfried,et al.  Entangled mechanical oscillators , 2009, Nature.

[40]  E. Hahn,et al.  Spin Echoes , 2011 .

[41]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[42]  Schumaker,et al.  New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. , 1985, Physical review. A, General physics.

[43]  Jun Ye,et al.  Spin squeezing in optical lattice clocks via lattice-based QND measurements , 2007, 0707.3834.

[44]  W. Lamb Quantum Theory of Measurement , 1986 .

[45]  R. Feynman Simulating physics with computers , 1999 .

[46]  Knight,et al.  Series representation of quantum-field quasiprobabilities. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[47]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[48]  Y Lin,et al.  Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in an ion chain. , 2013, Physical review letters.

[49]  W. W. Macalpine,et al.  Coaxial Resonators with Helical Inner Conductor , 1959, Proceedings of the IRE.

[50]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[51]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[52]  Fedor Jelezko,et al.  Processing quantum information in diamond , 2006 .

[53]  D M Lucas,et al.  Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning , 2011, 1110.1486.

[54]  G. Orriols,et al.  An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour , 1976 .

[55]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[56]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[57]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[58]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[59]  Blatt,et al.  Preparation of Fock states by observation of quantum jumps in an ion trap. , 1993, Physical review letters.

[60]  J. Britton,et al.  Microfabricated Chip Traps for Ions , 2008, 0812.3907.

[61]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[62]  L S Ma,et al.  Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. , 1994, Optics letters.

[63]  Christian F. Roos,et al.  Ion trap quantum gates with amplitude-modulated laser beams , 2007, 0710.1204.

[64]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[65]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[66]  Vogel,et al.  Even and odd coherent states of the motion of a trapped ion. , 1996, Physical review letters.

[67]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[68]  F. Rohde Remote ion traps for quantum networking: two-photon interference and correlations , 2009 .

[69]  Wolfgang P. Schleich,et al.  Quantum optics in phase space , 2001 .

[70]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[71]  Philipp Treutlein,et al.  Quantum metrology with a scanning probe atom interferometer. , 2013, Physical review letters.

[72]  I. Siddiqi,et al.  Suppression of the radiative decay of atomic coherence in squeezed vacuum , 2013, 1301.6276.

[73]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[74]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[75]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[76]  Lu-Ming Duan,et al.  Scalable trapped ion quantum computation with a probabilistic ion-photon mapping , 2004, Quantum Inf. Comput..

[77]  Simple and efficient photoionization loading of ions for precision ion-trapping experiments , 2001 .

[78]  R. B. Blakestad,et al.  Transport of trapped-ion qubits within a scalable quantum processor , 2010 .

[79]  A. Houck,et al.  Observation of a Dissipation-Induced Classical to Quantum Transition , 2013, 1312.2963.

[80]  F. Verstraete,et al.  Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation , 2008, 0803.1447.

[81]  A. Clerk,et al.  Arbitrarily large steady-state bosonic squeezing via dissipation , 2013, 1307.5309.

[82]  An ion trap built with photonic crystal fibre technology. , 2015, The Review of scientific instruments.

[83]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[84]  Gardiner,et al.  Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing. , 1986, Physical review letters.

[85]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[86]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[87]  David J. Wineland,et al.  Laser cooling of ions stored in harmonic and Penning traps , 1982 .

[88]  New Results - Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit , 2014, 1411.0979.

[89]  Fernando Pastawski,et al.  Quantum memories based on engineered dissipation , 2010, 1010.2901.

[90]  J. Paz,et al.  Course 8: Environment-Induced Decoherence and the Transition from Quantum to Classical , 2000, quant-ph/0010011.

[91]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[92]  C. Langer,et al.  High Fidelity Quantum Information Processing with Trapped Ions , 2006 .

[93]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[94]  E. Solano,et al.  Quantum tomography in position and momentum space , 2011, 1107.2068.

[95]  J. F. Poyatos,et al.  Quantum Reservoir Engineering with Laser Cooled Trapped Ions. , 1996, Physical review letters.

[96]  W. Schleich Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .

[97]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[98]  S. Webster,et al.  Raman Sideband Cooling and Coherent Manipulation of Trapped Ions , 2005 .

[99]  D. Dieks Communication by EPR devices , 1982 .

[100]  Andrew M. Steane,et al.  Electrode configurations for fast separation of trapped ions , 2004, Quantum Inf. Comput..

[101]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[102]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[103]  F. Schmidt-Kaler,et al.  Fabrication and heating rate study of microscopic surface electrode ion traps , 2010, 1009.2834.

[104]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[105]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[106]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[107]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[108]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[109]  F. Leupold,et al.  Quantum control of the motional states of trapped ions through fast switching of trapping potentials , 2012, 1208.3986.

[110]  P. Dirac The quantum theory of the electron , 1928 .

[111]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[112]  F. Schmidt-Kaler,et al.  Laser cooling with electromagnetically induced transparency: application to trapped samples of ions or neutral atoms , 2001 .

[113]  A. Vourdas,et al.  General two-mode squeezed states , 1988 .

[114]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[115]  V. Negnevitsky,et al.  All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions , 2013, 1306.3780.

[116]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[117]  F. L. Walls,et al.  Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .

[118]  Displaced and squeezed number states , 1996, quant-ph/9612050.

[119]  I. Walmsley,et al.  Creating diamond color centers for quantum optical applications , 2007, 0710.5379.

[120]  J. P. Home,et al.  Isotope-selective photoionization for calcium ion trapping , 2004 .