Limitations on SNR estimator accuracy

We consider the samples of a pure tone in additive white Gaussian noise (AWGN) for which we wish to determine the signal-to-noise ratio (SNR) defined here to be /spl alpha/=(A/sup 2//2/spl sigma//sup 2/), where A is the tone amplitude, and /spl sigma//sup 2/ is the noise variance. A and /spl sigma//sup 2/ are assumed to be deterministic but unknown a priori. If the variance of an unbiased estimator of /spl alpha/ is /spl sigma//sub /spl alpha//spl circ///sup 2/, we show that at high SNR, the normalized standard a deviation satisfies the Cramer-Rao lower bound (CRLB) according to /spl sigma//sub /spl alpha//spl circ////spl alpha//spl ges//spl radic/(2/N), where N is the number of independent observables used to obtain the SNR estimate /spl sigma//spl circ/.

[1]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[2]  Steven A. Tretter,et al.  Estimating the frequency of a noisy sinusoid by linear regression , 1985, IEEE Trans. Inf. Theory.

[3]  Alfred O. Hero,et al.  Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..

[4]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[5]  Sandro Bellini,et al.  Bounds on Error in Signal Parameter Estimation , 1974, IEEE Trans. Commun..

[6]  T. T. Soong,et al.  The joint estimation of signal and noise from the sum envelope , 1967, IEEE Trans. Inf. Theory.

[7]  P. Schultheiss,et al.  Delay estimation using narrow-band processes , 1981 .

[8]  Jacob Ziv,et al.  Improved Lower Bounds on Signal Parameter Estimation , 1975, IEEE Trans. Inf. Theory.

[9]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[10]  B.C. Lovell,et al.  The statistical performance of some instantaneous frequency estimators , 1992, IEEE Trans. Signal Process..

[11]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[12]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[13]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[14]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[15]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[16]  Luc Knockaert,et al.  The Barankin bound and threshold behavior in frequency estimation , 1997, IEEE Trans. Signal Process..