Encapsulation of Pt(iv) prodrugs within a Pt(ii) cage for drug delivery

This report describes a novel strategy for delivery of adamantyl-functionalized payloads using a supramolecular system, with a focus on Pt(iv) prodrugs.

[1]  Justin J. Wilson,et al.  Synthetic methods for the preparation of platinum anticancer complexes. , 2013, Chemical reviews.

[2]  J. Goodisman,et al.  Cyclodextrin capped gold nanoparticles as a delivery vehicle for a prodrug of cisplatin. , 2013, Inorganic chemistry.

[3]  Timothy R. Cook,et al.  Biomedical and biochemical applications of self-assembled metallacycles and metallacages. , 2013, Accounts of chemical research.

[4]  Jonathan R. Nitschke,et al.  Building on architectural principles for three-dimensional metallosupramolecular construction. , 2013, Chemical Society reviews.

[5]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[6]  E. Wexselblatt,et al.  What do we know about the reduction of Pt(IV) pro-drugs? , 2012, Journal of inorganic biochemistry.

[7]  G. Pastorin,et al.  Platinum(IV) prodrugs entrapped within multiwalled carbon nanotubes: Selective release by chemical reduction and hydrophobicity reversal , 2012 .

[8]  D. Kerwood,et al.  Pt(IV) complexes as prodrugs for cisplatin. , 2012, Journal of inorganic biochemistry.

[9]  T. Hambley,et al.  Pt(IV) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate. , 2012, Chemical communications.

[10]  L. Juillerat-Jeanneret,et al.  Organometallic cages as vehicles for intracellular release of photosensitizers. , 2012, Journal of the American Chemical Society.

[11]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[12]  Chee Fei Chin,et al.  Anticancer platinum (IV) prodrugs with novel modes of activity. , 2011, Current topics in medicinal chemistry.

[13]  Justin J. Wilson,et al.  Synthesis, characterization, and cytotoxicity of platinum(IV) carbamate complexes. , 2011, Inorganic chemistry.

[14]  J. Clegg,et al.  Reactivity modulation in container molecules , 2011 .

[15]  Omid C Farokhzad,et al.  Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo , 2011, Proceedings of the National Academy of Sciences.

[16]  N. Hodges,et al.  Noncovalent DNA-binding metallo-supramolecular cylinders prevent DNA transactions in vitro. , 2010, Angewandte Chemie.

[17]  Robert Langer,et al.  Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy , 2010, Proceedings of the National Academy of Sciences.

[18]  Wenbin Lin,et al.  Metal-organic frameworks as potential drug carriers. , 2010, Current opinion in chemical biology.

[19]  S. Lippard,et al.  Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate , 2009, Proceedings of the National Academy of Sciences.

[20]  Chad A Mirkin,et al.  Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. , 2009, Journal of the American Chemical Society.

[21]  Robert G. Bergman,et al.  Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. , 2009, Accounts of chemical research.

[22]  K. Rissanen,et al.  White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule , 2009, Science.

[23]  M. Fujita,et al.  Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. , 2009, Angewandte Chemie.

[24]  H. Dai,et al.  Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. , 2008, Journal of the American Chemical Society.

[25]  D. Gibson,et al.  Reduction of cis,trans,cis-[PtCl2(OCOCH3)2(NH3)2] by aqueous extracts of cancer cells. , 2007, Journal of medicinal chemistry.

[26]  H. Dai,et al.  Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. , 2007, Journal of the American Chemical Society.

[27]  Michael D. Pluth,et al.  Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis , 2007, Science.

[28]  M. J. Hannon,et al.  Supramolecular DNA recognition. , 2007, Chemical Society reviews.

[29]  M. Tamura,et al.  Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis , 2006, Science.

[30]  A. Dietrich,et al.  Cisplatin und seine Analoga: Übersicht über den Entwicklungsstatus und klinischen Einsatz , 2006 .

[31]  I. Usón,et al.  Molecular recognition of a three-way DNA junction by a metallosupramolecular helicate. , 2006, Angewandte Chemie.

[32]  P. Stang,et al.  X-ray diffraction and DOSY NMR characterization of self-assembled supramolecular metallocyclic species in solution. , 2005, Journal of the American Chemical Society.

[33]  M. Jakupec,et al.  Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. , 2005, Current medicinal chemistry.

[34]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[35]  Dong Wang,et al.  Cellular processing of platinum anticancer drugs , 2005, Nature Reviews Drug Discovery.

[36]  M. Fujita,et al.  Coordination assemblies from a Pd(II)-cornered square complex. , 2005, Accounts of chemical research.

[37]  C. S. Allardyce,et al.  Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. , 2005, Journal of the American Chemical Society.

[38]  M. Fujita,et al.  Self-assembled M(6)L(4)-type coordination nanocage with 2,2'-bipyridine ancillary ligands. Facile crystallization and X-ray analysis of shape-selective enclathration of neutral guests in the cage. , 2002, Journal of the American Chemical Society.

[39]  M. Hall,et al.  Platinum(IV) antitumour compounds: their bioinorganic chemistry , 2002 .

[40]  S. R. Seidel,et al.  High-symmetry coordination cages via self-assembly. , 2002, Accounts of chemical research.

[41]  K. Raymond,et al.  Design, Formation and Properties of Tetrahedral M4L4 and M4L6 Supramolecular Clusters1 , 2001 .

[42]  Kenneth N. Raymond,et al.  Supermolecules by Design , 1999 .

[43]  M. Fujita,et al.  Encapsulation of Large, Neutral Molecules in a Self-Assembled Nanocage Incorporating Six Palladium(II) Ions. , 1998, Angewandte Chemie.

[44]  M. Fujita,et al.  A Thermally Switchable Molecular Lock. Guest-Templated Synthesis of a Kinetically Stable Nanosized Cage , 1998 .

[45]  Katsuyuki Ogura,et al.  Transition-metal-directed assembly of well-defined organic architectures possessing large voids: From macrocycles to [2] catenanes , 1996 .

[46]  C. Sorenson,et al.  Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. , 1990, Journal of the National Cancer Institute.

[47]  S. Carter,et al.  Carboplatin: the clinical spectrum to date. , 1985, Cancer treatment reviews.

[48]  J. Trosko,et al.  Platinum Compounds: a New Class of Potent Antitumour Agents , 1969, Nature.

[49]  W. Marsden I and J , 2012 .

[50]  B. Therrien Drug delivery by water-soluble organometallic cages. , 2012, Topics in current chemistry.

[51]  E. Alessio Bioinorganic medicinal chemistry , 2011 .