Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton

[1]  Yi Li,et al.  The opium poppy genome and morphinan production , 2018, Science.

[2]  Jonathan D. G. Jones,et al.  Shifting the limits in wheat research and breeding using a fully annotated reference genome , 2018, Science.

[3]  Daniel L. Vera,et al.  The maize W22 genome provides a foundation for functional genomics and transposon biology , 2018, Nature Genetics.

[4]  Wei Fan,et al.  Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits , 2018, Nature Genetics.

[5]  Zhaoqing Chu,et al.  Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus , 2018, The Plant journal : for cell and molecular biology.

[6]  Shujun Ou,et al.  LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons1[OPEN] , 2017, Plant Physiology.

[7]  L. Mao,et al.  The Aegilops tauschii genome reveals multiple impacts of transposons , 2017, Nature Plants.

[8]  Karl G. Kugler,et al.  Genome sequence of the progenitor of the wheat D genome Aegilops tauschii , 2017, Nature.

[9]  Tianzhen Zhang,et al.  Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation , 2017, Plant Cell.

[10]  Axel Himmelbach,et al.  Wild emmer genome architecture and diversity elucidate wheat evolution and domestication , 2017, Science.

[11]  Jing Zhang,et al.  Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions. , 2017, The New phytologist.

[12]  Tianzhen Zhang,et al.  Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons , 2017, Genome Biology.

[13]  Haibao Tang,et al.  Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. , 2016, The Plant journal : for cell and molecular biology.

[14]  Q. Qian,et al.  The NnCenH3 protein and centromeric DNA sequence profiles of Nelumbo nucifera Gaertn. (sacred lotus) reveal the DNA structures and dynamics of centromeres in basal eudicots. , 2016, The Plant journal : for cell and molecular biology.

[15]  Tyson A. Clark,et al.  Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing , 2016, Nature Communications.

[16]  Eric Talevich,et al.  CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..

[17]  Lili Tu,et al.  GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. , 2016, Plant biotechnology journal.

[18]  Kevin L. Schneider,et al.  Inbreeding drives maize centromere evolution , 2016, Proceedings of the National Academy of Sciences.

[19]  Y. Ruan,et al.  The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres , 2015, Scientific Reports.

[20]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[21]  Caiping Cai,et al.  Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites , 2015, Scientific Reports.

[22]  L. Chin,et al.  HiCPlotter integrates genomic data with interaction matrices , 2015, Genome Biology.

[23]  R. Hedrich,et al.  Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. , 2015, Current opinion in plant biology.

[24]  Tianzhen Zhang,et al.  Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes , 2015, Genome Biology.

[25]  Lei Fang,et al.  Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement , 2015, Nature Biotechnology.

[26]  He Zhang,et al.  Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution , 2015, Nature Biotechnology.

[27]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[28]  Qing-Yong Yang,et al.  De novo plant genome assembly based on chromatin interactions: a case study of Arabidopsis thaliana. , 2015, Molecular plant.

[29]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[30]  Xun Xu,et al.  Genome sequence of the cultivated cotton Gossypium arboreum , 2014, Nature Genetics.

[31]  J. Patrick,et al.  Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling. , 2014, The Plant journal : for cell and molecular biology.

[32]  Leonie Steinhorst,et al.  Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake , 2014, Proceedings of the National Academy of Sciences.

[33]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[34]  Jiming Jiang,et al.  Maize centromeres expand and adopt a uniform size in the genetic background of oat , 2014, Genome research.

[35]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[36]  Y. Pei,et al.  The Dual Functions of WLIM1a in Cell Elongation and Secondary Wall Formation in Developing Cotton Fibers[C][W] , 2013, Plant Cell.

[37]  Jiming Jiang,et al.  Plant Centromere Biology: Jiang/Plant Centromere Biology , 2013 .

[38]  Thomas Nussbaumer,et al.  MIPS PlantsDB: a database framework for comparative plant genome research , 2012, Nucleic Acids Res..

[39]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[40]  Adi Doron-Faigenboim,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Repeated Polyploidization of Gossypium Genomes and the Evolution of Spinnable Cotton Fibres , 2022 .

[41]  Jiming Jiang,et al.  Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W] , 2012, Plant Cell.

[42]  O. Folkerts,et al.  The Cotton Centromere Contains a Ty3-gypsy-like LTR Retroelement , 2012, PloS one.

[43]  R. Mittler,et al.  How do plants feel the heat? , 2012, Trends in biochemical sciences.

[44]  J. Fernández,et al.  Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis[W][OA] , 2012, Plant Cell.

[45]  C. Scheuring,et al.  Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research , 2012, Nature Protocols.

[46]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[47]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[48]  E. Blumwald,et al.  The Arabidopsis Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction[C][W] , 2011, Plant Cell.

[49]  B. Burla,et al.  Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. , 2011, The Plant journal : for cell and molecular biology.

[50]  J. Poulain,et al.  The genome of Theobroma cacao , 2011, Nature Genetics.

[51]  Y. Ruan,et al.  Unraveling mechanisms of cell expansion linking solute transport, metabolism, plasmodesmtal gating and cell wall dynamics , 2010, Plant signaling & behavior.

[52]  M. Van Montagu,et al.  ADP-ribosylation factor machinery mediates endocytosis in plant cells , 2010, Proceedings of the National Academy of Sciences.

[53]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[54]  Y. Ruan,et al.  Evidence That High Activity of Vacuolar Invertase Is Required for Cotton Fiber and Arabidopsis Root Elongation through Osmotic Dependent and Independent Pathways, Respectively1[C][W][OA] , 2010, Plant Physiology.

[55]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[56]  E. Grill,et al.  ABA perception and signalling. , 2010, Trends in plant science.

[57]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[58]  Y. Ruan,et al.  Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation , 2009, Journal of experimental botany.

[59]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[60]  A. Fernie,et al.  Intra- and extra-cellular excretion of carboxylates. , 2010, Trends in plant science.

[61]  Chen Zeng,et al.  A clustering approach for identification of enriched domains from histone modification ChIP-Seq data , 2009, Bioinform..

[62]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[63]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[64]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[65]  Nansheng Chen,et al.  Genblasta: Enabling Blast to Identify Homologous Gene Sequences , 2022 .

[66]  Caren Chang,et al.  Ethylene signaling: new levels of complexity and regulation. , 2008, Current opinion in plant biology.

[67]  Stefano Lonardi,et al.  Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph , 2008, PLoS genetics.

[68]  Tianzhen Zhang,et al.  A preliminary analysis of genome structure and composition in Gossypium hirsutum , 2008, BMC Genomics.

[69]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[70]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[71]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[72]  A. Paterson,et al.  A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis , 1993, Plant Molecular Biology Reporter.

[73]  Bruce D. Smith,et al.  The Molecular Genetics of Crop Domestication , 2006, Cell.

[74]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[75]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[76]  B. Scheres,et al.  Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarityw⃞ , 2005, The Plant Cell Online.

[77]  Sean R. Eddy,et al.  Rfam: annotating non-coding RNAs in complete genomes , 2004, Nucleic Acids Res..

[78]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[79]  A. Paterson,et al.  Incongruent patterns of local and global genome size evolution in cotton. , 2004, Genome research.

[80]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[81]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[82]  S. Henikoff,et al.  Sequencing of a rice centromere uncovers active genes , 2004, Nature Genetics.

[83]  Z. Huáman,et al.  Genetic diversity and geographic pattern in early South American cotton domestication , 2004, Theoretical and Applied Genetics.

[84]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[85]  J. Wendel,et al.  Polyploidy and the Evolutionary History of Cotton , 2003 .

[86]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[87]  Richard H. Thomas Molecular Evolution and Phylogenetics , 2001, Heredity.

[88]  R. Furbank,et al.  The Control of Single-Celled Cotton Fiber Elongation by Developmentally Reversible Gating of Plasmodesmata and Coordinated Expression of Sucrose and K+ Transporters and Expansin , 2001, Plant Cell.

[89]  M. Nei,et al.  Molecular Evolution and Phylogenetics , 2000 .

[90]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[91]  A. Paterson,et al.  Comparative genetic mapping of allotetraploid cotton and its diploid progenitors , 1999 .

[92]  Claire O'Donovan,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 , 1999, Nucleic Acids Res..

[93]  Roderic Guigó,et al.  Assembling Genes from Predicted Exons In Linear Time with Dynamic Programming , 1998, J. Comput. Biol..

[94]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[95]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[96]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[97]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[98]  J. Wendel New World tetraploid cottons contain Old World cytoplasm. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[99]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[100]  E. Turcotte,et al.  Genetics, cytology and evolution of Gossypium. , 1985 .

[101]  P. Fryxell The natural history of the cotton tribe , 1980 .

[102]  R. Kohel,et al.  Texas Marker-1. Description of a Genetic Standard for Gossypium hirsutum L. 1 , 1970 .

[103]  M. Y. Menzel,et al.  The Significance of Multivalent Formation in Three-Species Gossypium Hybrids. , 1954, Genetics.

[104]  D. U. GERSTEL1 CHROMOSOMAL TRANSLOCATIONS IN INTERSPECIFIC HYBRIDS OF THE GENUS GOSSYPIUM , 1953 .