1 Regions of very low H 3 K 27 me 3 partition the Drosophila genome into 1 topological domains 2 3

topologically associated domains, housekeeping genes 25 26 27. CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. Abstract 28 Background 29

[1]  A. Zelenetz,et al.  Acute lymphoblastic leukemia. , 2019, Journal of the National Comprehensive Cancer Network : JNCCN.

[2]  Ilya M. Flyamer,et al.  Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains , 2016, Genome research.

[3]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[4]  Gerald Stampfel,et al.  Transcriptional regulators form diverse groups with context-dependent regulatory functions , 2015, Nature.

[5]  Roger D. Kornberg,et al.  Stable Chromosome Condensation Revealed by Chromosome Conformation Capture , 2015, Cell.

[6]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[7]  Paola Bovolenta,et al.  Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders , 2015, Proceedings of the National Academy of Sciences.

[8]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[9]  Yuri B Schwartz,et al.  Genome-wide activities of Polycomb complexes control pervasive transcription , 2015, Genome research.

[10]  Zhaohui S. Qin,et al.  Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. , 2015, Molecular cell.

[11]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[12]  Boris Lenhard,et al.  Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin , 2015 .

[13]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[14]  Matthias Landgraf,et al.  Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library , 2014, Development.

[15]  Céline Lévy-Leduc,et al.  Two-dimensional segmentation for analyzing Hi-C data , 2014, Bioinform..

[16]  G. Labesse,et al.  Chromatin Insulator Factors Involved in Long-Range DNA Interactions and Their Role in the Folding of the Drosophila Genome , 2014, PLoS genetics.

[17]  R. Kingston,et al.  H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex , 2014, eLife.

[18]  Zhaohui S. Qin,et al.  Insulator function and topological domain border strength scale with architectural protein occupancy , 2014, Genome Biology.

[19]  Christopher D. Scharer,et al.  B Cell Differentiation Is Associated with Reprogramming the CCCTC Binding Factor–Dependent Chromatin Architecture of the Murine MHC Class II Locus , 2014, The Journal of Immunology.

[20]  Kairong Cui,et al.  Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia , 2014, Leukemia.

[21]  Wen-Wen Lv,et al.  Depletion of histone deacetylase 3 antagonizes PI3K-mediated overgrowth of Drosophila organs through the acetylation of histone H4 at lysine 16 , 2013, Development.

[22]  William Stafford Noble,et al.  Integrative annotation of chromatin elements from ENCODE data , 2012, Nucleic acids research.

[23]  Zhaohui S. Qin,et al.  Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. , 2012, Molecular cell.

[24]  V. Corces,et al.  Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains , 2012, Genome research.

[25]  Kevin Y. Yip,et al.  Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors , 2012, Genome Biology.

[26]  Juan M. Vaquerizas,et al.  The NSL Complex Regulates Housekeeping Genes in Drosophila , 2012, PLoS genetics.

[27]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[28]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[29]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[30]  J. Söding,et al.  The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset , 2011, Nucleic acids research.

[31]  K. Jones,et al.  Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. , 2011, Molecular cell.

[32]  H. Saumweber,et al.  The Chriz–Z4 complex recruits JIL-1 to polytene chromosomes,a requirement for interband-specific phosphorylation of H3S10 , 2011, Journal of Biosciences.

[33]  Li Yang,et al.  The transcriptional diversity of 25 Drosophila cell lines. , 2011, Genome research.

[34]  Lovelace J. Luquette,et al.  Comprehensive analysis of the chromatin landscape in Drosophila , 2010, Nature.

[35]  Guillaume J. Filion,et al.  Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells , 2010, Cell.

[36]  Lee E. Edsall,et al.  Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. , 2010, Cell stem cell.

[37]  Eric S. Lander,et al.  Hi-C: A Method to Study the Three-dimensional Architecture of Genomes. , 2010, Journal of visualized experiments : JoVE.

[38]  Christopher D. Brown,et al.  A Comprehensive Map of Insulator Elements for the Drosophila Genome , 2010, PLoS genetics.

[39]  M. Cole,et al.  Subunit Composition and Substrate Specificity of a MOF-containing Histone Acetyltransferase Distinct from the Male-specific Lethal (MSL) Complex* , 2009, The Journal of Biological Chemistry.

[40]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[41]  Ann E. Loraine,et al.  The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets , 2009, Bioinform..

[42]  Olivier Cuvier,et al.  Genome-Wide Mapping of Boundary Element-Associated Factor (BEAF) Binding Sites in Drosophila melanogaster Links BEAF to Transcription , 2009, Molecular and Cellular Biology.

[43]  Tobias Straub,et al.  Active promoters and insulators are marked by the centrosomal protein 190 , 2009, The EMBO journal.

[44]  Dustin E. Schones,et al.  Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. , 2008, Genome research.

[45]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[46]  J. Robert Manak,et al.  Stability and Dynamics of Polycomb Target Sites in Drosophila Development , 2008, PLoS genetics.

[47]  Boris Adryan,et al.  CTCF Genomic Binding Sites in Drosophila and the Organisation of the Bithorax Complex , 2007, PLoS genetics.

[48]  Wouter de Laat,et al.  Quantitative analysis of chromosome conformation capture assays (3C-qPCR) , 2007, Nature Protocols.

[49]  Wolfgang Huber,et al.  Ringo – an R/Bioconductor package for analyzing ChIP-chip readouts , 2007, BMC Bioinformatics.

[50]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[51]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[52]  Xiaomin Bao,et al.  The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes , 2006, Journal of Cell Science.

[53]  Malgorzata Schelder,et al.  Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. , 2006, Molecular cell.

[54]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[55]  Kevin Struhl,et al.  Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. , 2005, Molecular cell.

[56]  Bing Li,et al.  Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription , 2005, Cell.

[57]  Nevan J. Krogan,et al.  Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex , 2005, Cell.

[58]  K. Johansen,et al.  The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes , 2005, Chromosoma.

[59]  J. Mattow,et al.  Chriz, a chromodomain protein specific for the interbands of Drosophila melanogaster polytene chromosomes , 2005, Chromosoma.

[60]  John R Yates,et al.  Acetylation by Tip60 Is Required for Selective Histone Variant Exchange at DNA Lesions , 2004, Science.

[61]  T. Parmely,et al.  Identification of New Subunits of the Multiprotein Mammalian TRRAP/TIP60-containing Histone Acetyltransferase Complex* , 2003, Journal of Biological Chemistry.

[62]  C. Allis,et al.  The Drosophila MSL Complex Acetylates Histone H4 at Lysine 16, a Chromatin Modification Linked to Dosage Compensation , 2000, Molecular and Cellular Biology.

[63]  Philippe Collas,et al.  A rapid micro chromatin immunoprecipitation assay (ChIP) , 2008, Nature Protocols.