Area and length minimizing flows for shape segmentation
暂无分享,去创建一个
[1] Demetri Terzopoulos,et al. Energy Constraints on Deformable Models: Recovering Shape and Non-Rigid Motion , 1987, AAAI.
[2] Kaleem Siddiqi,et al. Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
[3] Anthony J. Yezzi,et al. A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.
[4] I. Holopainen. Riemannian Geometry , 1927, Nature.
[5] P. Olver,et al. Affine invariant edge maps and active contours , 1995 .
[6] Benjamin B. Kimia,et al. Image segmentation by reaction-diffusion bubbles , 1995, Proceedings of IEEE International Conference on Computer Vision.
[7] Demetri Terzopoulos,et al. Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..
[8] Baba C. Vemuri,et al. Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[9] Luis Alvarez,et al. Axiomes et 'equations fondamentales du traitement d''images , 1992 .
[10] F. Guichard,et al. Axiomatisation et nouveaux opérateurs de la morphologie mathématique , 1992 .
[11] R. Kimmel,et al. Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .
[12] J. Sethian. AN ANALYSIS OF FLAME PROPAGATION , 1982 .
[13] M. Gage,et al. The heat equation shrinking convex plane curves , 1986 .
[14] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[15] B. Kimia,et al. Geometric Heat Equation and Non-linear Diiusion of Shapes and Images Contents 1 Introduction 1 2 the Shape from Deformation Framework 2 3 Nonlinear Smoothing by Curvature Deformation 4 3.1 Order Preserving Smoothing Annihilation of Extrema and Innection Points , 2007 .
[16] Benjamin B. Kimia,et al. On the evolution of curves via a function of curvature , 1992 .
[17] Yiannis Aloimonos,et al. Active vision , 2004, International Journal of Computer Vision.
[18] J. Sethian. Curvature and the evolution of fronts , 1985 .
[19] S. Zucker,et al. Toward a computational theory of shape: an overview , 1990, eccv 1990.
[20] Anthony J. Yezzi,et al. Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.
[21] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[22] G. Sapiro,et al. On affine plane curve evolution , 1994 .
[23] V. Caselles,et al. A geometric model for active contours in image processing , 1993 .
[24] S. Osher. Riemann Solvers, the Entropy Condition, and Difference , 1984 .
[25] P. Olver,et al. Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.
[26] J. Sethian. Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .
[27] Kaleem Siddiqi,et al. Hyperbolic "Smoothing" of shapes , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
[28] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .