Cloud Phase Changes Induced by CO2 Warming—a Powerful yet Poorly Constrained Cloud-Climate Feedback

[1]  G. Cesana,et al.  Multimodel evaluation of cloud phase transition using satellite and reanalysis data , 2015 .

[2]  D. Hartmann,et al.  Connections Between Clouds, Radiation, and Midlatitude Dynamics: a Review , 2015, Current Climate Change Reports.

[3]  D. Hartmann,et al.  Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part II: Phase Changes and Low Cloud Feedback* , 2014 .

[4]  M. Petters,et al.  Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles , 2014 .

[5]  T. Storelvmo,et al.  Spaceborne lidar observations of the ice‐nucleating potential of dust, polluted dust, and smoke aerosols in mixed‐phase clouds , 2014 .

[6]  T. Storelvmo,et al.  Influence of cloud phase composition on climate feedbacks , 2014 .

[7]  J. Penner,et al.  Intercomparison of the cloud water phase among global climate models , 2014 .

[8]  Richard G. Forbes,et al.  Improving the Representation of Low Clouds and Drizzle in the ECMWF Model Based on ARM Observations from the Azores , 2014 .

[9]  S. Klein,et al.  Low‐cloud optical depth feedback in climate models , 2013 .

[10]  A. Korolev,et al.  Improved Airborne Hot-Wire Measurements of Ice Water Content in Clouds , 2013 .

[11]  G. Cesana,et al.  Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO‐GOCCP , 2013 .

[12]  K. Taylor,et al.  Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5 , 2012 .

[13]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[14]  B. Murray,et al.  Ice nucleation by particles immersed in supercooled cloud droplets. , 2012, Chemical Society reviews.

[15]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[16]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[17]  Stephen A. Klein,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels , 2012 .

[18]  William B. Rossow,et al.  Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget , 2011 .

[19]  Jen-Ping Chen,et al.  A Classical-Theory-Based Parameterization of Heterogeneous Ice Nucleation by Mineral Dust, Soot, and Biological Particles in a Global Climate Model , 2010 .

[20]  M. D. Petters,et al.  Predicting global atmospheric ice nuclei distributions and their impacts on climate , 2010, Proceedings of the National Academy of Sciences.

[21]  Chang-Hoi Ho,et al.  Space observations of cold-cloud phase change , 2010, Proceedings of the National Academy of Sciences.

[22]  Yongxiang Hu,et al.  Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements , 2010 .

[23]  K. Trenberth,et al.  Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans , 2010 .

[24]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[25]  S. Vavrus,et al.  Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4 , 2009 .

[26]  U. Lohmann,et al.  Aerosol Influence on Mixed-Phase Clouds in CAM-Oslo , 2008 .

[27]  A. Kirkevåg,et al.  Modeling of the Wegener–Bergeron–Findeisen process—implications for aerosol indirect effects , 2008 .

[28]  Paul J. DeMott,et al.  An Empirical Parameterization of Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol , 2008 .

[29]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[30]  R. D. Cess Comparison of general circulation models , 2008 .

[31]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[32]  Yoko Tsushima,et al.  Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study , 2006 .

[33]  M. Doutriaux-Boucher,et al.  Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data , 2004 .

[34]  A. Korolev,et al.  Microphysical characterization of mixed‐phase clouds , 2003 .

[35]  Analysis of direct comparison of cloud top temperature and infrared split window signature Against independent retrievals of cloud thermodynamic phase , 2001 .

[36]  Judith A. Curry,et al.  Overview of Arctic Cloud and Radiation Characteristics , 1996 .

[37]  James J. Hack,et al.  Cloud feedback in atmospheric general circulation models: An update , 1996 .

[38]  William B. Rossow,et al.  Global, multiyear variations of optical thickness with temperature in low and cirrus clouds , 1994 .

[39]  John F. B. Mitchell,et al.  Carbon Dioxide and Climate. The Impact of Cloud Parameterization , 1993 .

[40]  George Tselioudis,et al.  Global Patterns of Cloud Optical Thickness Variation with Temperature and the Implications for Climate Change. , 1992 .

[41]  W. Cotton,et al.  New primary ice-nucleation parameterizations in an explicit cloud model , 1992 .

[42]  Hervé Le Treut,et al.  Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modelling assumptions , 1992 .

[43]  J. Mitchell,et al.  C02 and climate: a missing feedback? , 1989, Nature.

[44]  R. Somerville Cloud optical thickness feedbacks in the CO2 climate problem , 1984 .

[45]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.