Cellulolytic systems in insects.

Despite the presence of many carbohydrolytic activities in insects, their cellulolytic mechanisms are poorly understood. Whereas cellulase genes are absent from the genomes of Drosophila melanogaster or Bombyx mori, other insects such as termites produce their own cellulases. Recent studies using molecular biological techniques have brought new insights into the mechanisms by which the insects and their microbial symbionts digest cellulose in the small intestine. DNA sequences of cellulase and associated genes, as well as physiological and morphological information about the digestive systems of cellulase-producing insects, may allow the efficient use of cellulosic biomass as a sustainable energy source.

[1]  Random exchanges of non-conserved amino acid residues among four parental termite cellulases by family shuffling improved thermostability. , 2007, Protein engineering, design & selection : PEDS.

[2]  C. Gillott Food Uptake and Utilization , 1980 .

[3]  H. Saito,et al.  New endo-β-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites , 2002, Cellular and Molecular Life Sciences CMLS.

[4]  A. Kosugi,et al.  Synergistic Effects on Crystalline Cellulose Degradation between Cellulosomal Cellulases from Clostridium cellulovorans , 2002, Journal of bacteriology.

[5]  H. Noda,et al.  Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches , 2000, Current Biology.

[6]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[7]  L. Jouanin,et al.  Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. , 1999, Insect biochemistry and molecular biology.

[8]  G. Tokuda,et al.  Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. , 2002, Insect biochemistry and molecular biology.

[9]  Tomoko Nakamura,et al.  Morphology of the Digestive System in the Wood-Feeding Termite Nasutitermes takasagoensis (Shiraki) [Isoptera: Termitidae] , 2001 .

[10]  A. Ohtsuka,et al.  Synergistic effect of cellulase and hemicellulase on nutrient utilization and performance in broilers fed a corn–soybean meal diet , 2005 .

[11]  M. Desvaux The cellulosome of Clostridium cellulolyticum , 2005 .

[12]  N. Lo,et al.  Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  J. Handelsman,et al.  Contrasts in Cellulolytic Activities of Gut Microorganisms Between the Wood Borer, Saperda vestita (Coleoptera: Cerambycidae), and the Bark Beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae) , 2005 .

[14]  M. Slaytor Cellulose digestion in termites and cockroaches: What role do symbionts play? , 1992 .

[15]  Tuula T. Teeri,et al.  Crystalline cellulose degradation : new insight into the function of cellobiohydrolases , 1997 .

[16]  Y. Je,et al.  N-glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase. , 2005, Biochemical and biophysical research communications.

[17]  J. Kukor,et al.  Acquisition of Digestive Enzymes by Siricid Woodwasps from Their Fungal Symbiont , 1983, Science.

[18]  K. Mansour On the Digestion of Wood by Insects , 1934 .

[19]  P. Karrer,et al.  Polysaccharide XXXIII. Über enzymatische Abbau von Kunstseide und nativer Cellulose , 1925 .

[20]  E. Bayer,et al.  The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. , 1999, Trends in microbiology.

[21]  P. Veivers,et al.  Digestive enzymes of the salivary glands and gut of Mastotermes darwiniensis , 1982 .

[22]  Mike Jarvis,et al.  Chemistry: Cellulose stacks up , 2003, Nature.

[23]  P. Grandcolas,et al.  THE ORIGIN OF PROTISTAN SYMBIONTS IN TERMITES AND COCKROACHES: A PHYLOGENETIC PERSPECTIVE , 1996 .

[24]  I. Yasumasu,et al.  THE DISTRIBUTION OF CELLULASE IN INVERTEBRATES. , 1964, Comparative biochemistry and physiology.

[25]  D. Hegedus,et al.  New insights into peritrophic matrix synthesis, architecture, and function. , 2009, Annual review of entomology.

[26]  D. Janzen,et al.  Saturniid and Sphingid Caterpillars: Two Ways to Eat Leaves , 1988 .

[27]  J. Kukor,et al.  Cellulose digestion inMonochamus marmorator Kby. (Coleoptera: Cerambycidae): Role of acquired fungal enzymes , 1986, Journal of Chemical Ecology.

[28]  Y. Hayashizaki,et al.  Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. , 2007, FEMS microbiology ecology.

[29]  G. Tokuda,et al.  Purification and Molecular Cloning of Xylanases from the Wood-Feeding Termite, Coptotermes formosanus Shiraki , 2009, Bioscience, biotechnology, and biochemistry.

[30]  Yoshiyuki Sakaki,et al.  Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell , 2008, Proceedings of the National Academy of Sciences.

[31]  Hiroo Fukuda,et al.  Transcriptional regulation in wood formation. , 2007, Trends in plant science.

[32]  D. Thayer Facultative wood-digesting bacteria from the hind-gut of the termite Reticulitermes hesperus. , 1976, Journal of general microbiology.

[33]  J. Faulon,et al.  A three-dimensional model for lignocellulose from gymnospermous wood , 1994 .

[34]  P. Karrer,et al.  Polysaccharide XXXV. Weitere Beiträge zum enzymatischen Abbau der Kunstseide und nativer Cellulose , 1926 .

[35]  C. Noirot The Gut of Termites (Isoptera). Comparative Anatomy, Systematics, Phylogeny. I. Lower Termites , 1995, Annales de la Société entomologique de France (N.S.).

[36]  B. Pittendrigh,et al.  Caste- and development-associated gene expression in a lower termite , 2003, Genome Biology.

[37]  C. Nalepa Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  J. Azuma,et al.  Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus , 2002, Cellular and Molecular Life Sciences CMLS.

[39]  Mark F. Davis,et al.  Cellulase digestibility of pretreated biomass is limited by cellulose accessibility , 2007, Biotechnology and bioengineering.

[40]  J. Anderson,et al.  Specialization of the hindgut wall for the attachment of symbiotic micro-organisms in a termite Procubitermes aburiensis (Isoptera, Termitidae, Termitinae) , 1980, Zoomorphology.

[41]  H. Noda,et al.  A cellulase gene of termite origin , 1998, Nature.

[42]  Seong-Ryul Kim,et al.  cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. , 2004, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[43]  H. Noda,et al.  Site of secretion and properties of endogenous endo-beta-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. , 1997, Insect biochemistry and molecular biology.

[44]  M. Ohkuma Termite symbiotic systems: efficient bio-recycling of lignocellulose , 2003, Applied Microbiology and Biotechnology.

[45]  Roy H. Doi,et al.  Synergistic Effects of Cellulosomal Xylanase and Cellulases from Clostridium cellulovorans on Plant Cell Wall Degradation , 2003, Journal of bacteriology.

[46]  David R. Rose,et al.  Mechanism of catalysis by retaining β-glycosyl hydrolases , 1997 .

[47]  E. Bayer,et al.  Cellulose, cellulases and cellulosomes. , 1998, Current opinion in structural biology.

[48]  B. Dale,et al.  Sessions 3 and 8: Pretreatment and Biomass Recalcitrance: Fundamentals and Progress , 2009, Applied biochemistry and biotechnology.

[49]  T. Kudo,et al.  Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. , 2005, Gene.

[50]  MICHAEL M. Martin The Evolution of Insect-Fungus Associations: From Contact to Stable Symbiosis , 1992 .

[51]  J. Handelsman,et al.  Bacteria Associated with the Guts of Two Wood-Boring Beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae) , 2006 .

[52]  N. Lo,et al.  Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. , 2003, European journal of biochemistry.

[53]  J. Ni,et al.  Heterologous Overexpression of a Mutant Termite Cellulase Gene in Escherichia coli by DNA Shuffling of Four Orthologous Parental cDNAs , 2005, Bioscience, biotechnology, and biochemistry.

[54]  Robert J. Scholes,et al.  The Carbon Cycle and Atmospheric Carbon Dioxide , 2001 .

[55]  T. Ojima,et al.  Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. , 2003, European journal of biochemistry.

[56]  P. Veivers,et al.  The origin and distribution of cellulase in the termites, Nasutitermes exitiosus and Coptotermes lacteus , 1979 .

[57]  H. McClure,et al.  The Digestive System , 1978 .

[58]  P. Béguin,et al.  The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. , 1996, Critical reviews in biochemistry and molecular biology.

[59]  N. Lo,et al.  Marked variations in patterns of cellulase activity against crystalline‐ vs. carboxymethyl‐cellulose in the digestive systems of diverse, wood‐feeding termites , 2005 .

[60]  Michael M. Martin,et al.  Invertebrate-Microbial Interactions: Ingested Fungal Enzymes in Arthropod Biology , 1988 .

[61]  L. A. Crowder,et al.  Structure of the Malpighian Tubule Muscle of the American Cockroach, Periplaneta americana,, , 1972 .

[62]  N. Abo-Khatwa Cellulase of fungus-growing termites: A new hypothesis on its origin , 1978, Experientia.

[63]  W. Trager A cellulase from the symbiotic intestinal flagellates of termites and of the roach, Cryptocercus punctulatus. , 1932, The Biochemical journal.

[64]  D. Bignell Nutrition and digestion , 1981 .

[65]  H. Noda,et al.  Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage , 2004, Molecular ecology.

[66]  M. Slaytor Energy Metabolism in the Termite and Its Gut Microbiota , 2000 .

[67]  A. Tartar,et al.  Termite digestomes as sources for novel lignocellulases , 2008 .

[68]  M. Slaytor,et al.  Role of Microorganisms in the Metabolism of Termites , 1982 .

[69]  H. Rose,et al.  Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach , 1989 .

[70]  C. Nalepa,et al.  Evidence for sibling species in Cryptocercus punctulatus, the wood roach, from variation in mitochondrial DNA and karyotype , 1996, Heredity.

[71]  C. Noirot The gut of Termites (Isoptera) comparative anatomy, systematics, phylogeny. II. Higher Termites (Termitidae) , 2001 .

[72]  J. Carlson,et al.  Lignin degradation in wood-feeding insects , 2008, Proceedings of the National Academy of Sciences.

[73]  B. Jin,et al.  A digestive beta-glucosidase from the silkworm, Bombyx mori: cDNA cloning, expression and enzymatic characterization. , 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[74]  C. Noirot,et al.  3 – The Digestive System* , 1969 .

[75]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[76]  M. Wada,et al.  Surface density of cellobiohydrolase on crystalline celluloses , 2006, The FEBS journal.

[77]  Hongzhang Chen,et al.  Synergism between corn stover protein and cellulase , 2007 .

[78]  A Bairoch,et al.  New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. , 1993, The Biochemical journal.

[79]  S. Applebaum 7 – Biochemistry of Digestion , 1985 .

[80]  G. Tokuda,et al.  Hidden cellulases in termites: revision of an old hypothesis , 2007, Biology Letters.

[81]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[82]  H. Noda,et al.  Diet and carbohydrate digestion in the yellow-spotted longicorn beetle Psacothea hilaris. , 1997, Journal of insect physiology.

[83]  P Béguin,et al.  Molecular biology of cellulose degradation. , 1990, Annual review of microbiology.

[84]  M. Hogan,et al.  Transport of volatile fatty acids across the hindgut of the cockroach Panesthia cribrata Saussure and the termite, Mastotermes darwiniensis Froggatt , 1985 .

[85]  Richard T. Elander,et al.  Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol , 1997 .

[86]  MICHAEL M. Martin,et al.  Cellulose Digestion in the Midgut of the Fungus-Growing Termite Macrotermes natalensis: The Role of Acquired Digestive Enzymes , 1978, Science.

[87]  J. Dow Insect Midgut Function , 1987 .

[88]  R. Doi,et al.  Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans , 1998, Extremophiles.

[89]  T. Matsumoto,et al.  Metazoan cellulase genes from termites: intron/exon structures and sites of expression. , 1999, Biochimica et biophysica acta.

[90]  Y. Je,et al.  Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. , 2008, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[91]  P. Veivers,et al.  Selective defaunation of Mastotermes darwiniensis and its effect on cellulose and starch metabolism , 1983 .

[92]  M. Delwiche,et al.  Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production , 2009 .

[93]  P. Moritz,et al.  Beiträge zur vergleichenden Physiologie der Verdauung , 1898, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[94]  A. I. Antonov,et al.  Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose , 2007, Biotechnology and bioengineering.

[95]  F. Clissold The Biomechanics of Chewing and Plant Fracture: Mechanisms and Implications , 2007 .

[96]  M. Hogan,et al.  The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus) , 1988 .

[97]  R. Chapman 4 – Structure of the Digestive System , 1985 .

[98]  G. Robinson,et al.  Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome , 2006, Insect molecular biology.

[99]  P. Eggleton,et al.  Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches , 2007, Biology Letters.

[100]  A. Brune,et al.  Role of Microorganisms in the Digestion of Lignocellulose by Termites , 1994 .

[101]  U. Stingl,et al.  Structure and Topology of Microbial Communities in the Major Gut Compartments of Melolontha melolontha Larvae (Coleoptera: Scarabaeidae) , 2005, Applied and Environmental Microbiology.

[102]  G. Zhang,et al.  N-linked glycosylation of a beetle (Apriona germari) cellulase Ag-EGase II is necessary for enzymatic activity. , 2006, Insect biochemistry and molecular biology.

[103]  T. Yoshimura Contribution of the protozoan fauna to nutritional physiology of the lower termite, Coptotermes formosanus Shiraki (Isoptera:Rhinotermitidae) , 1995 .

[104]  J. Anderson,et al.  Formation of membrane-bounded secretory granules in the midgut epithelium of a termite, Cubitermes severus, and a possible intercellular route of discharge , 2004, Cell and Tissue Research.

[105]  T. Kudo,et al.  Transcriptome Analysis of the Digestive Organs of Hodotermopsis sjostedti, a Lower Termite That Hosts Mutualistic Microorganisms in Its Hindgut , 2008, Zoological science.

[106]  M. Blaxter,et al.  Ancient origin of glycosyl hydrolase family 9 cellulase genes. , 2005, Molecular biology and evolution.

[107]  X. Zhou,et al.  Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. , 2007, Gene.

[108]  T. Kudo,et al.  Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus , 2000, Extremophiles.

[109]  W. Terra,et al.  4.5 – Biochemistry of Digestion , 2005 .

[110]  Yoshiyuki Sakaki,et al.  Genome of an Endosymbiont Coupling N2 Fixation to Cellulolysis Within Protist Cells in Termite Gut , 2008, Science.

[111]  G. Zhang,et al.  Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulase from the mulberry longicorn beetle, Apriona germari. , 2006, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.