An algebraic approach to Sheffer polynomial sequences

A matrix approach to Sheffer polynomial sequences is proposed; in particular, two different determinantal forms of Sheffer sequences are given, the one as the function of a polynomial sequence of binomial type and the other as the function of the canonical base xi. The equivalence with the classical definitions of Sheffer and Roman and Rota is proven. Then, elementary matrix algebra tools are employed to reveal the known and unknown properties of Sheffer polynomials. Finally, classical and non-classical examples are also considered.

[1]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[2]  Francesco A. Costabile,et al.  The Appell interpolation problem , 2011, J. Comput. Appl. Math..

[3]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[4]  D. E. Loeb,et al.  A selected survey of umbral calculus , 1995 .

[5]  Francesco Aldo Costabile,et al.  Special even polynomials and related interpolatory problems , 2010 .

[6]  J. F. Steffensen The poweroid, an extension of the mathematical notion of power , 1941 .

[7]  Leetsch C. Hsu,et al.  The Sheffer group and the Riordan group , 2007, Discret. Appl. Math..

[8]  P. Appell,et al.  Sur une classe de polynômes , 1880 .

[9]  Mourad E. H. Ismail,et al.  A -umbral calculus , 1981 .

[10]  Adriano M. Garsia,et al.  An exposá of the mullin-rota theory of polynomials of binomial type , 1973 .

[11]  Sheng-liang Yang Recurrence relations for the Sheffer sequences , 2012 .

[12]  F. Costabile,et al.  Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem , 2012 .

[13]  Francesco A. Costabile,et al.  Δh-Appell sequences and related interpolation problem , 2012, Numerical Algorithms.

[14]  E. Lucas,et al.  A new approach to Bernoulli polynomials , 2006 .

[15]  Infinite triangular matrices, q-Pascal matrices, and determinantal representations , 2011 .

[16]  Francesco A. Costabile,et al.  A determinantal approach to Appell polynomials , 2010, J. Comput. Appl. Math..

[17]  I. M. Sheffer,et al.  Some properties of polynomial sets of type zero , 1939 .

[18]  F. A. Costabile,et al.  Expansion Over a Rectangle of Real Functions in Bernoulli Polynomials and Applications , 2001 .

[19]  Francesco Aldo Costabile,et al.  A special class of polynomials related to non-classic general interpolatory problems , 2009 .

[20]  Gian-Carlo Rota,et al.  On the foundations of combinatorial theory III , 1969 .

[21]  E. Rodney Canfield,et al.  Central and Local Limit Theorems for the Coefficients of Polynomials of Binomial Type , 1977, J. Comb. Theory, Ser. A.