An algebraic approach to Sheffer polynomial sequences
暂无分享,去创建一个
[1] E. N.,et al. The Calculus of Finite Differences , 1934, Nature.
[2] Francesco A. Costabile,et al. The Appell interpolation problem , 2011, J. Comput. Appl. Math..
[3] Louis W. Shapiro,et al. The Riordan group , 1991, Discret. Appl. Math..
[4] D. E. Loeb,et al. A selected survey of umbral calculus , 1995 .
[5] Francesco Aldo Costabile,et al. Special even polynomials and related interpolatory problems , 2010 .
[6] J. F. Steffensen. The poweroid, an extension of the mathematical notion of power , 1941 .
[7] Leetsch C. Hsu,et al. The Sheffer group and the Riordan group , 2007, Discret. Appl. Math..
[8] P. Appell,et al. Sur une classe de polynômes , 1880 .
[9] Mourad E. H. Ismail,et al. A -umbral calculus , 1981 .
[10] Adriano M. Garsia,et al. An exposá of the mullin-rota theory of polynomials of binomial type , 1973 .
[11] Sheng-liang Yang. Recurrence relations for the Sheffer sequences , 2012 .
[12] F. Costabile,et al. Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem , 2012 .
[13] Francesco A. Costabile,et al. Δh-Appell sequences and related interpolation problem , 2012, Numerical Algorithms.
[14] E. Lucas,et al. A new approach to Bernoulli polynomials , 2006 .
[15] Infinite triangular matrices, q-Pascal matrices, and determinantal representations , 2011 .
[16] Francesco A. Costabile,et al. A determinantal approach to Appell polynomials , 2010, J. Comput. Appl. Math..
[17] I. M. Sheffer,et al. Some properties of polynomial sets of type zero , 1939 .
[18] F. A. Costabile,et al. Expansion Over a Rectangle of Real Functions in Bernoulli Polynomials and Applications , 2001 .
[19] Francesco Aldo Costabile,et al. A special class of polynomials related to non-classic general interpolatory problems , 2009 .
[20] Gian-Carlo Rota,et al. On the foundations of combinatorial theory III , 1969 .
[21] E. Rodney Canfield,et al. Central and Local Limit Theorems for the Coefficients of Polynomials of Binomial Type , 1977, J. Comb. Theory, Ser. A.