There are significantly more nonegative polynomials than sums of squares
暂无分享,去创建一个
[1] D. Hilbert. Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .
[2] O. D. Kellogg. On bounded polynomials in several variables , 1928 .
[3] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[4] B. Reznick,et al. Even symmetric sextics , 1987 .
[5] Javier Duoandikoetxea,et al. Reverse Hölder inequalities for spherical harmonics , 1987 .
[6] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[7] A. Pajor,et al. On the Blaschke-Santaló inequality , 1990 .
[8] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[9] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[10] B. Reznick. Sums of Even Powers of Real Linear Forms , 1992 .
[11] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[12] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[13] B. Reznick. Uniform denominators in Hilbert's seventeenth problem , 1995 .
[14] János Pach,et al. Combinatorial Geometry , 2012 .
[15] J. Pach,et al. Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.
[16] Olga Taussky-Todd. SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .
[17] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[18] Charles N. Delzell,et al. Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .
[19] Timothy H. McNicholl. Review of "Complexity and real computation" by Blum, Cucker, Shub, and Smale. Springer-Verlag. , 2001, SIGA.
[20] Alexander I. Barvinok,et al. Estimating L∞ Norms by L2k Norms for Functions on Orbits , 2002, Found. Comput. Math..
[21] A. Barvinok. Norms by L 2 k Norms for Functions on Orbits , 2002 .
[22] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[23] Grigoriy Blekherman,et al. Convex geometry of orbits. , 2003, math/0312268.
[24] Grigoriy Blekherman. Convexity Properties of the Cone of Nonnegative Polynomials , 2004, Discret. Comput. Geom..