The continuum limit of loop quantum gravity - a framework for solving the theory
暂无分享,去创建一个
[1] Sylvain Carrozza. Discrete renormalization group for SU(2) tensorial group field theory , 2014, 1407.4615.
[2] L. Freidel,et al. On the semiclassical limit of 4d spin foam models , 2008, 0809.2280.
[3] F. Hellmann,et al. Holonomy Spin Foam Models: Definition and Coarse Graining , 2012, 1208.3388.
[4] T. Regge. General relativity without coordinates , 1961 .
[5] Muxin Han. 4-dimensional Spin-foam Model with Quantum Lorentz Group , 2010, 1012.4216.
[6] A. Ashtekar,et al. Loop quantum cosmology: a status report , 2011, 1108.0893.
[7] Semiclassical limits of simplicial quantum gravity , 1993, gr-qc/9310016.
[8] L. Crane,et al. Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.
[9] T. Thiemann,et al. Projective Loop Quantum Gravity II. Searching for Semi-Classical States , 2015, 1510.01925.
[10] S. Steinhaus,et al. Path integral measure and triangulation independence in discrete gravity , 2011, 1110.6866.
[11] LETTER TO THE EDITOR: Loop quantization from a lattice gauge theory perspective , 2004, gr-qc/0401109.
[12] F. Eckert,et al. Coarse graining methods for spin net and spin foam models , 2011, 1109.4927.
[13] B. Dittrich,et al. Dirac’s discrete hypersurface deformation algebras , 2013, 1304.5983.
[14] H. Nielsen,et al. Diffeomorphism Symmetry in Simplicial Quantum Gravity , 1986 .
[15] Philipp A. Hoehn,et al. Constraint analysis for variational discrete systems , 2013, 1303.4294.
[16] M. Varadarajan. The generator of spatial diffeomorphisms in the Koslowski–Sahlmann representation , 2013, 1306.6126.
[17] Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras , 2005, gr-qc/0504147.
[18] E. Livine,et al. Lifting SU(2) spin networks to projected spin networks , 2010, 1008.4093.
[19] C. Rovelli. On the structure of a background independent quantum theory: Hamilton function, transition amplitudes, classical limit and continuous limit , 2011, 1108.0832.
[20] A. Baratin,et al. Diffeomorphisms in group field theories , 2011, 1101.0590.
[21] B. Dittrich,et al. Flux formulation of loop quantum gravity: classical framework , 2014, 1412.3752.
[22] D. Oriti. Group field theory as the second quantization of loop quantum gravity , 2013, 1310.7786.
[23] C. Rovelli,et al. Divergences and orientation in spinfoams , 2012, 1207.5156.
[24] C. Rovelli,et al. Towards spinfoam cosmology , 2010, 1003.3483.
[25] Loop quantization as a continuum limit , 2005, hep-th/0511222.
[26] J. Pullin,et al. Quantum scalar field in quantum gravity: the vacuum in the spherically symmetric case , 2009, 0906.1774.
[27] Group Field Theory: An Overview , 2005, hep-th/0505016.
[28] K. Wilson,et al. The Renormalization group and the epsilon expansion , 1973 .
[29] Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity , 1996, gr-qc/9606088.
[30] A. Riello. Self-Energy of the Lorentzian EPRL-FK Spin Foam Model of Quantum Gravity , 2013, 1302.1781.
[31] S. Fairhurst,et al. Quantum gravity, shadow states and quantum mechanics , 2002, gr-qc/0207106.
[32] J. Pullin,et al. Discretisations, Constraints and Diffeomorphisms in Quantum Gravity , 2011, 1111.1879.
[33] L. Smolin,et al. Quantum deformation of quantum gravity , 1995, gr-qc/9512020.
[34] W. Kami'nski,et al. Spin-foams for all loop quantum gravity , 2009, 0909.0939.
[35] S. Steinhaus,et al. Investigation of the spinfoam path integral with quantum cuboid intertwiners , 2015, 1508.07961.
[36] L. Sindoni,et al. Coherent states in quantum gravity: a construction based on the flux representation of loop quantum gravity , 2011, 1110.5885.
[37] M. Bojowald. Loop Quantum Cosmology , 2005, Living reviews in relativity.
[38] P. González-Díaz. On the wave function of the universe , 1985 .
[39] F. Bais,et al. Condensate-induced transitions between topologically ordered phases , 2008, 0808.0627.
[40] Alejandro Perez,et al. The Spin-Foam Approach to Quantum Gravity , 2012, Living reviews in relativity.
[41] F. Niedermayer,et al. Perfect lattice action for asymptotically free theories , 1993, hep-lat/9308004.
[42] E. Livine. Deformation operators of spin networks and coarse-graining , 2013, 1310.3362.
[43] A. Riello. Self-energy of the Lorentzian Engle-Pereira-Rovelli-Livine and Freidel-Krasnov model of quantum gravity , 2013 .
[44] Finite Range Couplings in a Tensor Renormalization Group Approach to 2 D Classical Lattice Models , 2013 .
[45] B. Dittrich,et al. Breaking and Restoring of Diffeomorphism Symmetry in Discrete Gravity , 2009, 0909.5688.
[46] C. Rovelli,et al. In quantum gravity, summing is refining , 2010, 1010.5437.
[47] H. Sahlmann. On loop quantum gravity kinematics with a non-degenerate spatial background , 2010, 1006.0388.
[48] Bianca Dittrich,et al. Area–angle variables for general relativity , 2008, 0802.0864.
[49] C. Rovelli. Discretizing parametrized systems: The M agic of Ditt-invariance , 2011, 1107.2310.
[50] M. Roček,et al. Quantum regge calculus , 1981 .
[51] T. Koslowski. Dynamical Quantum Geometry (DQG Programme) , 2007, 0709.3465.
[52] K. Kucha. Geometry of hyperspace. I , 1976 .
[53] T. Thiemann,et al. Linking covariant and canonical LQG II: spin foam projector , 2013, 1307.5885.
[54] F. Eckert,et al. Towards computational insights into the large-scale structure of spin foams , 2011, 1111.0967.
[55] B. Dittrich,et al. Phase space descriptions for simplicial 4D geometries , 2008, 0807.2806.
[56] B. Dittrich,et al. Topological lattice field theories from intertwiner dynamics , 2013, 1311.1798.
[57] Bianca Dittrich,et al. Diffeomorphism symmetry in quantum gravity models , 2008, 0810.3594.
[58] B. Dittrich,et al. Bubble divergences and gauge symmetries in spin foams , 2013, 1304.6632.
[59] B. Dittrich. From the discrete to the continuous: towards a cylindrically consistent dynamics , 2012, 1205.6127.
[60] Sylvain Carrozza,et al. Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions , 2012, 1207.6734.
[61] R. Percacci,et al. Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.
[62] Benjamin Bahr,et al. Regge calculus from a new angle , 2009, 0907.4325.
[63] S. Steinhaus,et al. Perfect discretization of reparametrization invariant path integrals , 2011, 1101.4775.
[64] S. Steinhaus,et al. Decorated tensor network renormalization for lattice gauge theories and spin foam models , 2014, 1409.2407.
[65] Alejandro Perez,et al. Three-dimensional loop quantum gravity: physical scalar product and spin-foam models , 2004, gr-qc/0402110.
[66] Z. Y. Xie,et al. Second renormalization of tensor-network states. , 2008, Physical review letters.
[67] Michael Levin,et al. Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.
[68] Peter Labus,et al. Asymptotic safety in an interacting system of gravity and scalar matter , 2015, 1512.01589.
[69] C. Rovelli,et al. The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory , 2010, 1006.1294.
[70] Gauge-invariant coherent states for loop quantum gravity: II. Non-Abelian gauge groups , 2007, 0709.4619.
[71] Philipp A. Hoehn,et al. From covariant to canonical formulations of discrete gravity , 2009, 0912.1817.
[72] Linking topological quantum field theory and nonperturbative quantum gravity , 1995, gr-qc/9505028.
[73] A. Ashtekar,et al. Institute for Mathematical Physics Projective Techniques and Functional Integration for Gauge Theories Projective Techniques and Functional Integration for Gauge Theories , 2022 .
[74] S. Steinhaus,et al. Discretization independence implies non-locality in 4D discrete quantum gravity , 2014, 1404.5288.
[75] Philipp A. Hoehn. Quantization of systems with temporally varying discretization. II. Local evolution moves , 2014, 1401.7731.
[76] Claus Kiefer,et al. Modern Canonical Quantum General Relativity , 2008 .
[77] T. Thiemann,et al. Projective Loop Quantum Gravity I. State Space , 2014, 1411.3592.
[78] A. Baratin,et al. Melonic Phase Transition in Group Field Theory , 2013, 1307.5026.
[79] B. Dittrich,et al. A new realization of quantum geometry , 2015, Classical and Quantum Gravity.
[80] F. Hellmann,et al. Holonomy spin foam models: boundary Hilbert spaces and time evolution operators , 2012, 1209.4539.
[81] Philipp A. Hoehn. Quantization of systems with temporally varying discretization I: Evolving Hilbert spaces , 2014, 1401.6062.
[82] B. Dittrich. How to construct diffeomorphism symmetry on the lattice , 2012, 1201.3840.
[83] B. Dittrich,et al. (Broken) Gauge symmetries and constraints in Regge calculus , 2009, 0905.1670.
[84] B. Dittrich,et al. Improved and Perfect Actions in Discrete Gravity , 2009, 0907.4323.
[85] B. Bahr. Operator Spin Foams: holonomy formulation and coarse graining , 2011, 1112.3567.
[86] Andrzej Banburski,et al. Pachner moves in a 4D Riemannian holomorphic spin foam model , 2014, 1412.8247.
[87] A. Ashtekar,et al. New variables for classical and quantum gravity. , 1986, Physical review letters.
[88] B. Dittrich,et al. Spin Foam Models with Finite Groups , 2011, 1103.6264.
[89] B. Dittrich,et al. A new vacuum for loop quantum gravity , 2014, 1401.6441.
[90] D. Oriti. Group Field Theory and Loop Quantum Gravity , 2014, 1408.7112.
[91] Simone Speziale,et al. Linearized dynamics from the 4-simplex Regge action , 2007, 0707.4513.
[92] L. Freidel,et al. Semiclassical limit of 4-dimensional spin foam models , 2008 .
[93] Curvature function and coarse graining , 2010, 1101.3818.
[94] Observables in quantum gravity , 2001, gr-qc/0104034.
[95] Christian Fleischhack. Communications in Mathematical Physics Representations of the Weyl Algebra in Quantum Geometry , 2008 .
[96] E. Schnetter,et al. Coarse graining of spin net models: dynamics of intertwiners , 2013, 1306.2987.
[97] S. Steinhaus,et al. Quantum group spin nets: refinement limit and relation to spin foams , 2013, 1312.0905.
[98] Frank Saueressig,et al. Quantum Einstein gravity , 2012, 1202.2274.
[99] Xiao-Gang Wen,et al. Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.
[100] The graviton vacuum as a distributional state in kinematic loop quantum gravity , 2004, gr-qc/0410120.
[101] T. Thiemann,et al. Testing the master constraint programme for loop quantum gravity: I. General framework , 2004, gr-qc/0411138.
[102] B. Bahr,et al. On background-independent renormalization of spin foam models , 2014, 1407.7746.
[103] J. Hartle,et al. Wave functions constructed from an invariant sum over histories satisfy constraints. , 1991, Physical review. D, Particles and fields.
[104] D. Oriti. Foundations of Space and Time: The microscopic dynamics of quantum space as a group field theory , 2011, 1110.5606.
[105] R. Oeckl. A 'General boundary' formulation for quantum mechanics and quantum gravity , 2003, hep-th/0306025.
[106] T. Koslowski,et al. Loop quantum gravity vacuum with nondegenerate geometry , 2011, 1109.4688.
[107] C. Rovelli,et al. Self-energy and vertex radiative corrections in LQG , 2008, 0810.1714.
[108] Barbero G Jf. Real-polynomial formulation of general relativity in terms of connections. , 1994 .
[109] M. Reuter,et al. Quantum Einstein gravity: Towards an asymptotically safe field theory of gravity , 2007 .
[110] Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.
[111] S. Steinhaus,et al. Time evolution as refining, coarse graining and entangling , 2013, 1311.7565.
[112] T. Thiemann. The Phoenix Project: master constraint programme for loop quantum gravity , 2003, gr-qc/0305080.
[113] Carlo Rovelli,et al. 'Sum over surfaces' form of loop quantum gravity , 1997 .