The continuum limit of loop quantum gravity - a framework for solving the theory

The construction of a continuum limit for the dynamics of loop quantum gravity is unavoidable to complete the theory. We explain that such a construction is equivalent to obtaining the continuum physical Hilbert space, which encodes the solutions of the theory. We present iterative coarse graining methods to construct physical states in a truncation scheme and explain in which sense this scheme represents a renormalization flow. We comment on the role of diffeomorphism symmetry as an indicator for the continuum limit.

[1]  Sylvain Carrozza Discrete renormalization group for SU(2) tensorial group field theory , 2014, 1407.4615.

[2]  L. Freidel,et al.  On the semiclassical limit of 4d spin foam models , 2008, 0809.2280.

[3]  F. Hellmann,et al.  Holonomy Spin Foam Models: Definition and Coarse Graining , 2012, 1208.3388.

[4]  T. Regge General relativity without coordinates , 1961 .

[5]  Muxin Han 4-dimensional Spin-foam Model with Quantum Lorentz Group , 2010, 1012.4216.

[6]  A. Ashtekar,et al.  Loop quantum cosmology: a status report , 2011, 1108.0893.

[7]  Semiclassical limits of simplicial quantum gravity , 1993, gr-qc/9310016.

[8]  L. Crane,et al.  Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.

[9]  T. Thiemann,et al.  Projective Loop Quantum Gravity II. Searching for Semi-Classical States , 2015, 1510.01925.

[10]  S. Steinhaus,et al.  Path integral measure and triangulation independence in discrete gravity , 2011, 1110.6866.

[11]  LETTER TO THE EDITOR: Loop quantization from a lattice gauge theory perspective , 2004, gr-qc/0401109.

[12]  F. Eckert,et al.  Coarse graining methods for spin net and spin foam models , 2011, 1109.4927.

[13]  B. Dittrich,et al.  Dirac’s discrete hypersurface deformation algebras , 2013, 1304.5983.

[14]  H. Nielsen,et al.  Diffeomorphism Symmetry in Simplicial Quantum Gravity , 1986 .

[15]  Philipp A. Hoehn,et al.  Constraint analysis for variational discrete systems , 2013, 1303.4294.

[16]  M. Varadarajan The generator of spatial diffeomorphisms in the Koslowski–Sahlmann representation , 2013, 1306.6126.

[17]  Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras , 2005, gr-qc/0504147.

[18]  E. Livine,et al.  Lifting SU(2) spin networks to projected spin networks , 2010, 1008.4093.

[19]  C. Rovelli On the structure of a background independent quantum theory: Hamilton function, transition amplitudes, classical limit and continuous limit , 2011, 1108.0832.

[20]  A. Baratin,et al.  Diffeomorphisms in group field theories , 2011, 1101.0590.

[21]  B. Dittrich,et al.  Flux formulation of loop quantum gravity: classical framework , 2014, 1412.3752.

[22]  D. Oriti Group field theory as the second quantization of loop quantum gravity , 2013, 1310.7786.

[23]  C. Rovelli,et al.  Divergences and orientation in spinfoams , 2012, 1207.5156.

[24]  C. Rovelli,et al.  Towards spinfoam cosmology , 2010, 1003.3483.

[25]  Loop quantization as a continuum limit , 2005, hep-th/0511222.

[26]  J. Pullin,et al.  Quantum scalar field in quantum gravity: the vacuum in the spherically symmetric case , 2009, 0906.1774.

[27]  Group Field Theory: An Overview , 2005, hep-th/0505016.

[28]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[29]  Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity , 1996, gr-qc/9606088.

[30]  A. Riello Self-Energy of the Lorentzian EPRL-FK Spin Foam Model of Quantum Gravity , 2013, 1302.1781.

[31]  S. Fairhurst,et al.  Quantum gravity, shadow states and quantum mechanics , 2002, gr-qc/0207106.

[32]  J. Pullin,et al.  Discretisations, Constraints and Diffeomorphisms in Quantum Gravity , 2011, 1111.1879.

[33]  L. Smolin,et al.  Quantum deformation of quantum gravity , 1995, gr-qc/9512020.

[34]  W. Kami'nski,et al.  Spin-foams for all loop quantum gravity , 2009, 0909.0939.

[35]  S. Steinhaus,et al.  Investigation of the spinfoam path integral with quantum cuboid intertwiners , 2015, 1508.07961.

[36]  L. Sindoni,et al.  Coherent states in quantum gravity: a construction based on the flux representation of loop quantum gravity , 2011, 1110.5885.

[37]  M. Bojowald Loop Quantum Cosmology , 2005, Living reviews in relativity.

[38]  P. González-Díaz On the wave function of the universe , 1985 .

[39]  F. Bais,et al.  Condensate-induced transitions between topologically ordered phases , 2008, 0808.0627.

[40]  Alejandro Perez,et al.  The Spin-Foam Approach to Quantum Gravity , 2012, Living reviews in relativity.

[41]  F. Niedermayer,et al.  Perfect lattice action for asymptotically free theories , 1993, hep-lat/9308004.

[42]  E. Livine Deformation operators of spin networks and coarse-graining , 2013, 1310.3362.

[43]  A. Riello Self-energy of the Lorentzian Engle-Pereira-Rovelli-Livine and Freidel-Krasnov model of quantum gravity , 2013 .

[44]  Finite Range Couplings in a Tensor Renormalization Group Approach to 2 D Classical Lattice Models , 2013 .

[45]  B. Dittrich,et al.  Breaking and Restoring of Diffeomorphism Symmetry in Discrete Gravity , 2009, 0909.5688.

[46]  C. Rovelli,et al.  In quantum gravity, summing is refining , 2010, 1010.5437.

[47]  H. Sahlmann On loop quantum gravity kinematics with a non-degenerate spatial background , 2010, 1006.0388.

[48]  Bianca Dittrich,et al.  Area–angle variables for general relativity , 2008, 0802.0864.

[49]  C. Rovelli Discretizing parametrized systems: The M agic of Ditt-invariance , 2011, 1107.2310.

[50]  M. Roček,et al.  Quantum regge calculus , 1981 .

[51]  T. Koslowski Dynamical Quantum Geometry (DQG Programme) , 2007, 0709.3465.

[52]  K. Kucha Geometry of hyperspace. I , 1976 .

[53]  T. Thiemann,et al.  Linking covariant and canonical LQG II: spin foam projector , 2013, 1307.5885.

[54]  F. Eckert,et al.  Towards computational insights into the large-scale structure of spin foams , 2011, 1111.0967.

[55]  B. Dittrich,et al.  Phase space descriptions for simplicial 4D geometries , 2008, 0807.2806.

[56]  B. Dittrich,et al.  Topological lattice field theories from intertwiner dynamics , 2013, 1311.1798.

[57]  Bianca Dittrich,et al.  Diffeomorphism symmetry in quantum gravity models , 2008, 0810.3594.

[58]  B. Dittrich,et al.  Bubble divergences and gauge symmetries in spin foams , 2013, 1304.6632.

[59]  B. Dittrich From the discrete to the continuous: towards a cylindrically consistent dynamics , 2012, 1205.6127.

[60]  Sylvain Carrozza,et al.  Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions , 2012, 1207.6734.

[61]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[62]  Benjamin Bahr,et al.  Regge calculus from a new angle , 2009, 0907.4325.

[63]  S. Steinhaus,et al.  Perfect discretization of reparametrization invariant path integrals , 2011, 1101.4775.

[64]  S. Steinhaus,et al.  Decorated tensor network renormalization for lattice gauge theories and spin foam models , 2014, 1409.2407.

[65]  Alejandro Perez,et al.  Three-dimensional loop quantum gravity: physical scalar product and spin-foam models , 2004, gr-qc/0402110.

[66]  Z. Y. Xie,et al.  Second renormalization of tensor-network states. , 2008, Physical review letters.

[67]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[68]  Peter Labus,et al.  Asymptotic safety in an interacting system of gravity and scalar matter , 2015, 1512.01589.

[69]  C. Rovelli,et al.  The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory , 2010, 1006.1294.

[70]  Gauge-invariant coherent states for loop quantum gravity: II. Non-Abelian gauge groups , 2007, 0709.4619.

[71]  Philipp A. Hoehn,et al.  From covariant to canonical formulations of discrete gravity , 2009, 0912.1817.

[72]  Linking topological quantum field theory and nonperturbative quantum gravity , 1995, gr-qc/9505028.

[73]  A. Ashtekar,et al.  Institute for Mathematical Physics Projective Techniques and Functional Integration for Gauge Theories Projective Techniques and Functional Integration for Gauge Theories , 2022 .

[74]  S. Steinhaus,et al.  Discretization independence implies non-locality in 4D discrete quantum gravity , 2014, 1404.5288.

[75]  Philipp A. Hoehn Quantization of systems with temporally varying discretization. II. Local evolution moves , 2014, 1401.7731.

[76]  Claus Kiefer,et al.  Modern Canonical Quantum General Relativity , 2008 .

[77]  T. Thiemann,et al.  Projective Loop Quantum Gravity I. State Space , 2014, 1411.3592.

[78]  A. Baratin,et al.  Melonic Phase Transition in Group Field Theory , 2013, 1307.5026.

[79]  B. Dittrich,et al.  A new realization of quantum geometry , 2015, Classical and Quantum Gravity.

[80]  F. Hellmann,et al.  Holonomy spin foam models: boundary Hilbert spaces and time evolution operators , 2012, 1209.4539.

[81]  Philipp A. Hoehn Quantization of systems with temporally varying discretization I: Evolving Hilbert spaces , 2014, 1401.6062.

[82]  B. Dittrich How to construct diffeomorphism symmetry on the lattice , 2012, 1201.3840.

[83]  B. Dittrich,et al.  (Broken) Gauge symmetries and constraints in Regge calculus , 2009, 0905.1670.

[84]  B. Dittrich,et al.  Improved and Perfect Actions in Discrete Gravity , 2009, 0907.4323.

[85]  B. Bahr Operator Spin Foams: holonomy formulation and coarse graining , 2011, 1112.3567.

[86]  Andrzej Banburski,et al.  Pachner moves in a 4D Riemannian holomorphic spin foam model , 2014, 1412.8247.

[87]  A. Ashtekar,et al.  New variables for classical and quantum gravity. , 1986, Physical review letters.

[88]  B. Dittrich,et al.  Spin Foam Models with Finite Groups , 2011, 1103.6264.

[89]  B. Dittrich,et al.  A new vacuum for loop quantum gravity , 2014, 1401.6441.

[90]  D. Oriti Group Field Theory and Loop Quantum Gravity , 2014, 1408.7112.

[91]  Simone Speziale,et al.  Linearized dynamics from the 4-simplex Regge action , 2007, 0707.4513.

[92]  L. Freidel,et al.  Semiclassical limit of 4-dimensional spin foam models , 2008 .

[93]  Curvature function and coarse graining , 2010, 1101.3818.

[94]  Observables in quantum gravity , 2001, gr-qc/0104034.

[95]  Christian Fleischhack Communications in Mathematical Physics Representations of the Weyl Algebra in Quantum Geometry , 2008 .

[96]  E. Schnetter,et al.  Coarse graining of spin net models: dynamics of intertwiners , 2013, 1306.2987.

[97]  S. Steinhaus,et al.  Quantum group spin nets: refinement limit and relation to spin foams , 2013, 1312.0905.

[98]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[99]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[100]  The graviton vacuum as a distributional state in kinematic loop quantum gravity , 2004, gr-qc/0410120.

[101]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: I. General framework , 2004, gr-qc/0411138.

[102]  B. Bahr,et al.  On background-independent renormalization of spin foam models , 2014, 1407.7746.

[103]  J. Hartle,et al.  Wave functions constructed from an invariant sum over histories satisfy constraints. , 1991, Physical review. D, Particles and fields.

[104]  D. Oriti Foundations of Space and Time: The microscopic dynamics of quantum space as a group field theory , 2011, 1110.5606.

[105]  R. Oeckl A 'General boundary' formulation for quantum mechanics and quantum gravity , 2003, hep-th/0306025.

[106]  T. Koslowski,et al.  Loop quantum gravity vacuum with nondegenerate geometry , 2011, 1109.4688.

[107]  C. Rovelli,et al.  Self-energy and vertex radiative corrections in LQG , 2008, 0810.1714.

[108]  Barbero G Jf Real-polynomial formulation of general relativity in terms of connections. , 1994 .

[109]  M. Reuter,et al.  Quantum Einstein gravity: Towards an asymptotically safe field theory of gravity , 2007 .

[110]  Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.

[111]  S. Steinhaus,et al.  Time evolution as refining, coarse graining and entangling , 2013, 1311.7565.

[112]  T. Thiemann The Phoenix Project: master constraint programme for loop quantum gravity , 2003, gr-qc/0305080.

[113]  Carlo Rovelli,et al.  'Sum over surfaces' form of loop quantum gravity , 1997 .