Embedding Cycles into Hypercubes with Prescribe Vertices in the Specific Order

In this paper, we are interesting in a new cycle embedding problem. Let ${\bf x_1}, {\bf x_2}, \ldots, {\bf x_k}$ be any $k$-vertices. Can we find a cycle $C$ in the hypercube $Q_n$ such that $C$ traverses these $k$ vertices in the specific order? In this paper, we study $k=4$. Let $l$ be any even integer satisfying $h({\bf x_1}, {\bf x_2}) + h({\bf x_2}, {\bf x_3}) + h({\bf x_3}, {\bf x_4}) + h({\bf x_4}, {\bf x_1}) \le l \le 2^n$. For $n \geq 5$, we will prove that there exists a cycle $C$ in $Q_n$ of length $l$ such that $C$ traverses these $4$ vertices in the specific order except for the case that $l\in \{6,8\}$ when $\langle {\bf x_1}, {\bf x_3}, {\bf x_2}, {\bf x_4}, {\bf x_1}\rangle$ forms a cycle of length 4.

[1]  Chang-Hsiung Tsai Fault-tolerant cycles embedded in hypercubes with mixed link and node failures , 2008, Appl. Math. Lett..

[2]  Cheng-Kuan Lin,et al.  Graph Theory and Interconnection Networks , 2008 .

[3]  Xiaohua Jia,et al.  Optimal Embeddings of Paths with Various Lengths in Twisted Cubes , 2007, IEEE Transactions on Parallel and Distributed Systems.

[4]  Alexandr V. Kostochka,et al.  Degree conditions for k‐ordered hamiltonian graphs , 2003, J. Graph Theory.

[5]  Michael S. Jacobson,et al.  On k-ordered graphs , 2000, J. Graph Theory.

[6]  Gábor N. Sárközy,et al.  On k-ordered Hamiltonian graphs , 1999 .

[7]  Cheng-Kuan Lin,et al.  On the bipanpositionable bipanconnectedness of hypercubes , 2009, Theor. Comput. Sci..

[8]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[9]  Jun-Ming Xu,et al.  Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes , 2007, Parallel Comput..

[10]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[11]  Jimmy J. M. Tan,et al.  Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..

[12]  Gen-Huey Chen,et al.  Cycles in butterfly graphs , 2000, Networks.

[13]  Jimmy J. M. Tan,et al.  Fault-tolerant hamiltonian laceability of hypercubes , 2002, Inf. Process. Lett..

[14]  Khaled Day,et al.  Embedding of Cycles in Arrangement Graphs , 1993, IEEE Trans. Computers.

[15]  Jou-Ming Chang,et al.  Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs , 2004 .

[16]  Ralph J. Faudree,et al.  Survey of results on k-ordered graphs , 2001, Discret. Math..

[17]  Anne Germa,et al.  Cycles in the cube-connected cycles graph , 1998, Discret. Appl. Math..

[18]  Jimmy J. M. Tan,et al.  Embedding hamiltonian paths in hypercubes with a required vertex in a fixed position , 2008, Inf. Process. Lett..

[19]  Xiaohua Jia,et al.  Complete path embeddings in crossed cubes , 2006, Inf. Sci..

[20]  Pao-Lien Lai,et al.  Embedding geodesic and balanced cycles into hypercubes , 2009 .

[21]  Jun-Ming Xu,et al.  Edge-fault-tolerant edge-bipancyclicity of hypercubes , 2005, Inf. Process. Lett..

[22]  Xiaohua Jia,et al.  Optimal path embedding in crossed cubes , 2005, IEEE Transactions on Parallel and Distributed Systems.

[23]  Michael S. Jacobson,et al.  Onk-ordered graphs , 2000 .