Electron temperature anisotropy regulation by whistler instability

The solar wind electron temperature anisotropy is regulated by a number of physical processes, which include adiabatic expansion, electron Coulomb collisions, and microinstabilities. In the collisionless limit, the measured electron temperature anisotropy is constrained by the marginal threshold conditions for whistler (electromagnetic electron cyclotron or EMEC) and firehose instabilities, which are excited by excessive perpendicular and parallel temperature anisotropies, respectively. In the literature, these thresholds are expressed as inverse relationships between the electron temperature ratio and parallel beta, which are constructed on the basis of linear stability analysis and empirical fitting. In the present paper, macroscopic quasi‐linear kinetic theory of whistler (or EMEC) instability is employed in order to investigate the time development of the instability. One‐dimensional particle‐in‐cell (PIC) simulation is also carried out, and it is found that PIC simulation confirms the validity of the macroscopic quasi‐linear approach. It is also found that the saturation stage of the instability naturally corresponds to the threshold condition, thus confirming the inverse relationship. The present finding shows that the macroscopic quasi‐linear kinetic theory may be a valid theoretical tool for dynamical description of the solar wind.

[1]  M. Sarfraz,et al.  Macroscopic quasi‐linear theory of electromagnetic electron cyclotron instability associated with core and halo solar wind electrons , 2016 .

[2]  D. Wendel,et al.  SOLAR WIND MAGNETIC FLUCTUATIONS AND ELECTRON NON-THERMAL TEMPERATURE ANISOTROPY: SURVEY OF WIND-SWE-VEIS OBSERVATIONS , 2015 .

[3]  B. Eliasson,et al.  Nonlinear evolution of the electromagnetic electron-cyclotron instability in bi-Kappa distributed plasma , 2015 .

[4]  S. Poedts,et al.  Towards realistic parametrization of the kinetic anisotropy and the resulting instabilities in space plasmas. Electromagnetic electron–cyclotron instability in the solar wind , 2015 .

[5]  P. Yoon,et al.  Simulation and quasilinear theory of proton firehose instability , 2015 .

[6]  P. Yoon,et al.  Electron distributions observed with Langmuir waves in the plasma sheet boundary layer , 2014 .

[7]  P. Yoon,et al.  Quasilinear theory and particle-in-cell simulation of proton cyclotron instability , 2014 .

[8]  P. Hellinger,et al.  Oblique electron fire hose instability: Particle‐in‐cell simulations , 2014 .

[9]  J. Kasper,et al.  LIMITS ON ALPHA PARTICLE TEMPERATURE ANISOTROPY AND DIFFERENTIAL FLOW FROM KINETIC INSTABILITIES: SOLAR WIND OBSERVATIONS , 2013, 1309.4010.

[10]  J. Kasper,et al.  SELF-CONSISTENT ION CYCLOTRON ANISOTROPY–BETA RELATION FOR SOLAR WIND PROTONS , 2013, 1307.1059.

[11]  M. Velli,et al.  Signatures of kinetic instabilities in the solar wind , 2013 .

[12]  P. Yoon,et al.  Quasilinear theory of anisotropy‐beta relations for proton cyclotron and parallel firehose instabilities , 2012 .

[13]  P. Yoon,et al.  Quasilinear theory of anisotropy-beta relation for combined mirror and proton cyclotron instabilities , 2012 .

[14]  J. Kasper,et al.  INSTABILITY-DRIVEN LIMITS ON HELIUM TEMPERATURE ANISOTROPY IN THE SOLAR WIND: OBSERVATIONS AND LINEAR VLASOV ANALYSIS , 2012 .

[15]  Dan Xu,et al.  Constraints on electron temperature anisotropies in sheath regions of interplanetary shocks , 2012 .

[16]  Khan‐Hyuk Kim,et al.  Empirical versus exact numerical quasilinear analysis of electromagnetic instabilities driven by temperature anisotropy , 2012 .

[17]  P. Isenberg A self-consistent marginally stable state for parallel ion cyclotron waves , 2011, 1203.1938.

[18]  S. Gary,et al.  Whistler anisotropy instability at low electron β: Particle-in-cell simulations , 2011 .

[19]  S. Landi,et al.  ON THE COMPETITION BETWEEN RADIAL EXPANSION AND COULOMB COLLISIONS IN SHAPING THE ELECTRON VELOCITY DISTRIBUTION FUNCTION: KINETIC SIMULATIONS , 2010 .

[20]  E. Quataert,et al.  Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. , 2009, Physical review letters.

[21]  M. Maksimović,et al.  Electron temperature anisotropy constraints in the solar wind , 2008 .

[22]  Petr Hellinger,et al.  Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU , 2007 .

[23]  M. Maksimović,et al.  Proton temperature anisotropy in the magnetosheath: comparison of 3-D MHD modelling with Cluster data , 2007 .

[24]  M. Velli,et al.  Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations , 2006 .

[25]  E. Marsch,et al.  Limits on the core temperature anisotropy of solar wind protons , 2006 .

[26]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[27]  S. Schwartz,et al.  Electron anisotropy constraint in the magnetosheath: Cluster observations , 2005 .

[28]  E. Marsch,et al.  On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind , 2004 .

[29]  S. Gary,et al.  Resonant electron firehose instability: Particle-in-cell simulations , 2003 .

[30]  E. Marsch,et al.  Anisotropy regulation and plateau formation through pitch angle diffusion of solar wind protons in resonance with , 2002 .

[31]  Alan J. Lazarus,et al.  Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy , 2002 .

[32]  S. Gary,et al.  Signatures of wave‐ion interactions in the solar wind: Ulysses observations , 2002 .

[33]  J. Steinberg,et al.  Proton temperature anisotropy constraint in the solar wind: ACE observations , 2001 .

[34]  E. Marsch,et al.  Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves , 2001 .

[35]  S. Habbal,et al.  Electron kinetic firehose instability , 2000 .

[36]  H. Matsumoto,et al.  New kinetic instability: Oblique Alfvén fire hose , 2000 .

[37]  J. L. Green,et al.  Ion temperature anisotropies in the Earth's high‐latitude magnetosheath: Hawkeye observations , 1998 .

[38]  S. Gary,et al.  Proton temperature anisotropy in the magnetosheath: Hybrid simulations , 1996 .

[39]  Joseph Wang,et al.  Whistler instability: Electron anisotropy upper bound , 1996 .

[40]  J. Eastwood,et al.  One‐ and two‐dimensional simulations of whistler mode waves in an anisotropic plasma , 1995 .

[41]  B. Anderson,et al.  Inverse correlations between the ion temperature anisotropy and plasma beta in the Earth's quasi-parallel magnetosheath , 1994 .

[42]  Dan Winske,et al.  The proton cyclotron instability and the anisotropy/β inverse correlation , 1994 .

[43]  Brian J. Anderson,et al.  Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer , 1994 .

[44]  G. Paschmann,et al.  The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations , 1994 .

[45]  C. Wu,et al.  Effect of finite ion gyroradius on the fire‐hose instability in a high beta plasma , 1993 .

[46]  Eckart Marsch,et al.  Kinetic Physics of the Solar Wind Plasma , 1991 .

[47]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .

[48]  S. Peter Gary,et al.  Proton temperature anisotropy instabilities in the solar wind , 1976 .

[49]  J. Ogden,et al.  Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high‐beta plasmas , 1975 .

[50]  M. Schulz,et al.  Validity of CGL equations in solar wind problems , 1973 .

[51]  E. Ott,et al.  Simulation of Whistler Instabilities in Anisotropic Plasmas , 1972 .

[52]  F. Low,et al.  The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.