The <i>rank index problem</i> is the following: Preprocess and store a bit string <i>x</i> ∈ {0,1}<sup><i>n</i></sup> on a random access machine with word size <i>w</i> so that <i>rank</i> queries "What is Σ<sup><i>j</i></sup><inf><i>i</i>=1</inf> <i>x</i><inf><i>i</i></inf>?" for arbitrary values of <i>j</i> can afterwards be easily answered. The <i>selection index problem</i> is the following: Preprocess and store a bit string <i>x</i> ∈ {0,1}<sup><i>n</i></sup> so that <i>selection</i> queries "What is the index of the <i>j</i>'th 1-bit in <i>x</i>?" for arbitrary values of <i>j</i> can afterwards be easily answered. The data structure representing <i>x</i> should be an <i>index structure</i>, i.e., the <i>n</i>-bit string <i>x</i> is kept <i>verbatim</i> in [<i>n</i>/<i>w</i>] words and the preprocessing phase adds an <i>r</i>-bit <i>index</i> φ(<i>x</i>) with additional information contained in [<i>r/w</i>] words. We are interested in tradeoffs between <i>r</i>, the size of the index measured in bits (the <i>redundancy</i> of the scheme), and <i>t</i>, the worst case time for answering a query.
[1]
Rajeev Raman,et al.
Succinct indexable dictionaries with applications to encoding k-ary trees and multisets
,
2002,
SODA '02.
[2]
David Richard Clark,et al.
Compact pat trees
,
1998
.
[3]
Anna Gál,et al.
The cell probe complexity of succinct data structures
,
2007,
Theor. Comput. Sci..
[4]
Guy Jacobson,et al.
Space-efficient static trees and graphs
,
1989,
30th Annual Symposium on Foundations of Computer Science.
[5]
S. Srinivasa Rao,et al.
Space Efficient Suffix Trees
,
1998,
J. Algorithms.
[6]
Erik D. Demaine,et al.
A linear lower bound on index size for text retrieval
,
2001,
SODA '01.