Computational multi-dimensional imaging based on compound-eye optics

Artificial compound-eye optics have been used for three-dimensional information acquisition and display. It also enables us to realize a diversity of coded imaging process in each elemental optics. In this talk, we introduce our single-shot compound-eye imaging system to observe multi-dimensional information including depth, spectrum, and polarization based on compressive sensing. Furthermore it is applicable to increase the dynamic range and field-of-view. We also demonstrate an extended depth-of-field (DOF) cameras based on compound-eye optics. These extended DOF cameras physically or computationally implement phase modulations to increase the focusing range.

[1]  Keiichiro Kagawa,et al.  Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems , 2010 .

[2]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[3]  Jun Tanida,et al.  Computational superposition compound eye imaging for extended depth-of-field and field-of-view. , 2012, Optics express.

[4]  Jérôme Primot,et al.  Demonstration of an infrared microcamera inspired by Xenos peckii vision. , 2009, Applied optics.

[5]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[6]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[7]  Bahram Javidi,et al.  Feasibility study for compressive multi-dimensional integral imaging. , 2013, Optics express.

[8]  Bahram Javidi,et al.  Multidimensional imaging using compressive Fresnel holography. , 2012, Optics letters.

[9]  Jun Tanida,et al.  Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition. , 2010, Optics express.

[10]  Pantazis Mouroulis Depth of field extension with spherical optics. , 2008, Optics express.

[11]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[12]  J. Tanida,et al.  Thin Observation Module by Bound Optics (TOMBO): Concept and Experimental Verification. , 2001, Applied optics.

[13]  Jun Tanida,et al.  Multi-channel data acquisition using multiplexed imaging with spatial encoding. , 2010, Optics express.

[14]  Frank Wippermann,et al.  Micro-optical artificial compound eyes. , 2006 .

[15]  Michael W. Kudenov,et al.  Review of snapshot spectral imaging technologies , 2013, Optics and Precision Engineering.

[16]  A. Tünnermann,et al.  Thin compound-eye camera. , 2005, Applied optics.

[17]  Kouichi Nitta,et al.  Image reconstruction for thin observation module by bound optics by using the iterative backprojection method. , 2006, Applied optics.

[18]  Shree K. Nayar,et al.  PiCam , 2013, ACM Trans. Graph..

[19]  Jun Tanida,et al.  Reconstruction of a high-resolution image on a compound-eye image-capturing system. , 2004, Applied optics.

[20]  Jean Taboury,et al.  Design strategies to simplify and miniaturize imaging systems. , 2011, Applied optics.

[21]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[22]  Jun Tanida,et al.  Computational superposition projector for extended depth of field and field of view. , 2013, Optics letters.

[23]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[24]  David J. Brady,et al.  Multiscale gigapixel photography , 2012, Nature.

[25]  Yusuke Ogura,et al.  Three-Dimensional Information Acquisition Using a Compound Imaging System , 2007 .

[26]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[27]  Jun Tanida,et al.  Multidimensional TOMBO imaging and its applications , 2011, Optical Engineering + Applications.

[28]  Jun Tanida,et al.  Computational phase modulation in light field imaging. , 2013, Optics express.

[29]  Nathan Hagen,et al.  Multiscale lens design. , 2009, Optics express.

[30]  Andreas Tünnermann,et al.  Thin wafer-level camera lenses inspired by insect compound eyes. , 2010, Optics express.

[31]  D. Brady,et al.  Coded aperture snapshot spectral polarization imaging. , 2013, Applied optics.

[32]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[33]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[34]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .