A Jet-ADAF model for Sgr A*

The recent Chandra observation of the radio source at the center of our Galaxy, Sgr A * , puts new constraints on its theoretical models. The spectrum is very soft, and the source is rapidly variable. We consider different models to explain the observations. We find that the features of the X-ray spectrum can be marginally explained with an advection-dominated accretion flow (ADAF) model while it does not well fit the radio spectrum. An ADAF with strong winds (ADIOS) model is not favored if we assume that the wind does not radiate. Alternatively, we propose a coupled jet plus accretion disk model to explain the observations for Sgr A * . The accretion flow is described as an ADAF fed by Bondi-Hoyle accretion of hot plasma in the Galactic Center region. A small fraction of the accretion flow is ejected near the black hole, forming a jet after passing through a shock. As a result, the electron temperature increases to ~$2 \times 10^{11}~{\rm K}$, which is about 10 times higher than the highest temperature attained in the ADAF. The model is self-consistent since the main jet parameters are determined by the underlying accretion disk at the inner edge. The emergent spectrum of Sgr A * is the sum of the emission from jet and underlying ADAF. The very strong Comptonization of synchrotron emission from the jet can dominate the bremsstrahlung from the ADAF, therefore, a very short variability timescale is expected and the predicted X-ray slope and the radio spectrum is in very good agreement with the observations.

[1]  H. Falcke,et al.  NGC4258: a jet-dominated low-luminosity AGN? , 2002, astro-ph/0205531.

[2]  H. Falcke,et al.  Circular polarization of radio emission from relativistic jets , 2001, astro-ph/0112398.

[3]  M. Gilfanov,et al.  Lighthouses of the universe : the most luminous celestial objects and their use for cosmology : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-10 August 2001 , 2002 .

[4]  Caltech,et al.  Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre , 2001, Nature.

[5]  H. Falcke,et al.  The Nature of the 10 kilosecond X-ray flare in Sgr A* , 2001, astro-ph/0109081.

[6]  R. Coker The Stellar Winds of Galactic Centre and the Low Accretion Rate of Sgr A , 2001 .

[7]  Fulvio Melia,et al.  Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.

[8]  W. Goss,et al.  Radio Variability of Sagittarius A*—a 106 Day Cycle , 2000, astro-ph/0011169.

[9]  Sera Markoff,et al.  A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the , 2000, astro-ph/0010560.

[10]  Robert Coker,et al.  A Magnetic Dynamo Origin for the Submillimeter Excess in Sagittarius A* , 2000, astro-ph/0008416.

[11]  H. Falcke,et al.  Radio Sources in Low-Luminosity Active Galactic Nuclei. II. Very Long Baseline Interferometry Detections of Compact Radio Cores and Jets in a Sample of LINERs , 2000, astro-ph/0005383.

[12]  Holland,et al.  Detection of Polarized Millimeter and Submillimeter Emission from Sagittarius A* , 2000, The Astrophysical journal.

[13]  E. Quataert,et al.  Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.

[14]  F. Yuan Possible evidence for the disc origin for the powering of jets in Sgr A* and nearby elliptical galaxies , 2000, astro-ph/0004197.

[15]  R. Narayan,et al.  Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows , 2000, astro-ph/0004195.

[16]  J. Laming Electron Heating at SNR Collisionless Shocks , 2000 .

[17]  F. Yuan,et al.  The Role of the Outer Boundary Condition in Accretion Disk Models: Theory and Application , 2000, astro-ph/0002068.

[18]  M. Rupen,et al.  A Stationary Core with a One-sided Jet in the Center of M81 , 1999, astro-ph/9911463.

[19]  R. Lovelace,et al.  Magnetic Field Limitations on Advection-dominated Flows , 1999, astro-ph/9902344.

[20]  S. Chakrabarti,et al.  Mass outflow rate from accretion discs around compact objects , 1999, astro-ph/9912493.

[21]  A. Evans,et al.  High-Resolution Infrared Imaging of the Compact Nuclear Source in NGC 4258 , 1999, astro-ph/9910557.

[22]  H. Falcke,et al.  Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A* , 1999, astro-ph/9907215.

[23]  F. Yuan Accretion Flows: The Role of the Outer Boundary Condition , 1999, astro-ph/9907317.

[24]  D. Backer,et al.  Proper Motion of the Compact, Nonthermal Radio Source in the Galactic Center, Sagittarius A* , 1999, astro-ph/9906048.

[25]  R. Treuhaft,et al.  The Proper Motion of Sagittarius A*. I. First VLBA Results , 1999, astro-ph/9905075.

[26]  Cambridge,et al.  Low‐radiative‐efficiency accretion in the nuclei of elliptical galaxies , 1999, astro-ph/9905053.

[27]  M. Livio Astrophysical jets: a phenomenological examination of acceleration and collimation , 1999 .

[28]  E. Blackman On particle energization in accretion flows , 1999 .

[29]  R. Narayan,et al.  Thermal X-Ray Line Emission from Accreting Black Holes , 1998, astro-ph/9811412.

[30]  E. Quataert,et al.  Spectral Models of Advection-dominated Accretion Flows with Winds , 1998, astro-ph/9810136.

[31]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[32]  R. Blandford,et al.  What Is the Accretion Rate in NGC 4258? , 1998, astro-ph/9808036.

[33]  E. Quataert,et al.  Turbulence and Particle Heating in Advection-dominated Accretion Flows , 1998, astro-ph/9803112.

[34]  R. Sanders CENTRAL PARSECS OF THE GALAXY , 1999 .

[35]  M. Rieke,et al.  The central parsecs of the galaxy : galactic center workshop : proceedings of a meeting held at Tucson, Arizona, U.S.A. 7-11 September, 1998 , 1999 .

[36]  J. E. Pringle,et al.  Theory of black hole accretion disks , 1999 .

[37]  Luis C. Ho,et al.  The Spectral Energy Distributions of Low-Luminosity Active Galactic Nuclei , 1998, astro-ph/9905012.

[38]  R. Mahadevan,et al.  Reconciling the spectrum of Sagittarius A* with a two-temperature plasma model , 1998, Nature.

[39]  Zhi-qiang Shen,et al.  Intrinsic Size of Sagittarius A*: 72 Schwarzschild Radii , 1998, astro-ph/9809222.

[40]  E. Becklin,et al.  High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy , 1998, astro-ph/9807210.

[41]  H. Falcke,et al.  The Simultaneous Spectrum of Sagittarius A* from 20 Centimeters to 1 Millimeter and the Nature of the Millimeter Excess , 1998, astro-ph/9801085.

[42]  A. Gruzinov Radiative Efficiency of Collisionless Accretion , 1997, astro-ph/9710132.

[43]  J. Carlstrom,et al.  High-Frequency Measurements of the Spectrum of Sagittarius A* , 1997 .

[44]  Guohong Xu,et al.  Advection-dominated Outflows , 1997 .

[45]  S. Mineshige,et al.  Spectrum of Optically Thin Advection-dominated Accretion Flow around a Black Hole: Application to Sagittarius A* , 1997, astro-ph/9708234.

[46]  Robert F. Coker,et al.  Hydrodynamical Accretion onto Sagittarius A* from Distributed Point Sources , 1997, astro-ph/9708089.

[47]  M. Kusunose,et al.  Optically Thin, Advection-Dominated Two-Temperature Disks , 1997 .

[48]  Jonathan E. Grindlay,et al.  Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.

[49]  R. Lovelace,et al.  Influence of Ohmic Heating on Advection-dominated Accretion Flows , 1997, astro-ph/9704208.

[50]  K. Menten,et al.  The Position of Sagittarius A*: Accurate Alignment of the Radio and Infrared Reference Frames at the Galactic Center , 1997 .

[51]  Fulvio Melia,et al.  Accretion Disk Evolution with Wind Infall. I. General Solution and Application to Sagittarius A* , 1996, astro-ph/9611095.

[52]  R. Mahadevan,et al.  Scaling Laws for Advection-dominated Flows: Applications to Low-Luminosity Galactic Nuclei , 1996, astro-ph/9609107.

[53]  R. Narayan,et al.  Global Structure and Dynamics of Advection-dominated Accretion Flows around Black Holes , 1996, astro-ph/9607019.

[54]  J. Lasota,et al.  Advection-dominated Accretion: Global Transonic Solutions , 1996, astro-ph/9607020.

[55]  J. Raymond,et al.  Electron-ion Equilibration in Nonradiative Shocks Associated With SN 1006 , 1996 .

[56]  A. Eckart,et al.  Observations of stellar proper motions near the Galactic Centre , 1996, Nature.

[57]  G. Rieke,et al.  Stellar Kinematics and the Black Hole in the Galactic Center: Erratum , 1996 .

[58]  H. Falcke The Nuclear Jet in M81 , 1996, astro-ph/9604026.

[59]  L. Blitz,et al.  Unsolved Problems of the Milky Way , 1996 .

[60]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[61]  R. Narayan,et al.  Unified description of accretion flows around black holes , 1995, astro-ph/9502015.

[62]  O. Regev,et al.  Thermal equilibria of accretion disks , 1994, astro-ph/9409018.

[63]  R. Narayan,et al.  Advection-dominated Accretion: Self-Similarity and Bipolar Outflows , 1994, astro-ph/9411058.

[64]  S. Padin,et al.  Small-scale structure and position of Sagittarius A(*) from VLBI at 3 millimeter wavelength , 1994 .

[65]  Fulvio Melia,et al.  An accreting black hole model for Sagittarius A(*). 2: A detailed study , 1994 .

[66]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[67]  B. Draine,et al.  Theory of Interstellar Shocks , 1993 .

[68]  Fulvio Melia,et al.  An accreting black hole model for sagittarius A , 1992 .

[69]  K. Papadopoulos,et al.  A mechanism for strong shock electron heating in supernova remnants , 1988 .

[70]  L. Drury An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .

[71]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[72]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.

[73]  W. Zurek,et al.  Rotation-induced bistability of transonic accretion onto a black hole , 1981 .

[74]  S. Reynolds,et al.  Synchrotron Radiation from Relativistic Winds, with an Application to the Compact Radio Source at the Galactic Center , 1980 .

[75]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .