Factors affecting polymorphism at microsatellite loci in bread wheat [Triticum aestivum (L.) Thell]: effects of mutation processes and physical distance from the centromere

[1]  Junhua Peng,et al.  The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. , 2003, Genome research.

[2]  Laurence D. Hurst,et al.  Evidence for co-evolution of gene order and recombination rate , 2003, Nature Genetics.

[3]  E. Nevo,et al.  Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review , 2002, Molecular ecology.

[4]  Y. Dong,et al.  An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production , 2002, Theoretical and Applied Genetics.

[5]  J. Doebley,et al.  Rate and pattern of mutation at microsatellite loci in maize. , 2002, Molecular biology and evolution.

[6]  B. Gill,et al.  Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. , 2002, Genome.

[7]  G. Bai,et al.  Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. , 2002, Genome.

[8]  Martin J Lercher,et al.  Human SNP variability and mutation rate are higher in regions of high recombination. , 2002, Trends in genetics : TIG.

[9]  M. Ganal,et al.  Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers , 2002, Theoretical and Applied Genetics.

[10]  S. Andersen,et al.  Diversity changes in an intensively bred wheat germplasm during the 20th century , 2002, Molecular Breeding.

[11]  Y. Weng,et al.  Comparison of homoeologous group-6 short arm physical maps of wheat and barley reveals a similar distribution of recombinogenic and gene-rich regions , 2002, Theoretical and Applied Genetics.

[12]  D. Nag,et al.  Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent , 2002, Molecular Genetics and Genomics.

[13]  L. Qi,et al.  High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning , 2001, Theoretical and Applied Genetics.

[14]  W. Stephan,et al.  Species and recombination effects on DNA variability in the tomato genus. , 2001, Genetics.

[15]  L. Duret,et al.  Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Varshney,et al.  Integrated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and pre-harvest sprouting tolerance in bread wheat , 2001 .

[17]  J. Garza,et al.  Detection of reduction in population size using data from microsatellite loci , 2001, Molecular ecology.

[18]  S. Barker,et al.  Microsatellite Loci of the Cattle Tick Boophilus Microplus (Acari: Ixodidae) , 2000, Experimental & Applied Acarology.

[19]  M. Nachman,et al.  Microsatellite variation and recombination rate in the human genome. , 2000, Genetics.

[20]  R. Hudson,et al.  Adjusting the focus on human variation. , 2000, Trends in genetics : TIG.

[21]  R. Koebner,et al.  Temporal trends in the diversity of UK wheat , 2000, Theoretical and Applied Genetics.

[22]  Mei Peng,et al.  The direction of microsatellite mutations is dependent upon allele length , 2000, Nature Genetics.

[23]  Hans Ellegren,et al.  Heterogeneous mutation processes in human microsatellite DNA sequences , 2000, Nature Genetics.

[24]  B. Gill,et al.  Physical characterization of the homoeologous group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. , 2000, Genome.

[25]  C. Ceoloni,et al.  Physical mapping of wheat-Aegilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes , 1999 .

[26]  B. Gill,et al.  A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat , 1999, Theoretical and Applied Genetics.

[27]  W. Stephan,et al.  DNA polymorphism in lycopersicon and crossing-over per physical length. , 1998, Genetics.

[28]  C. Halldén,et al.  Positive correlation between recombination rates and levels of genetic variation in natural populations of sea beet (Beta vulgaris subsp. maritima). , 1998, Genetics.

[29]  M. Nachman,et al.  DNA variability and recombination rates at X-linked loci in humans. , 1998, Genetics.

[30]  C. Schlötterer,et al.  High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. , 1998, Molecular biology and evolution.

[31]  J. Dvorak,et al.  The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat , 1998, Theoretical and Applied Genetics.

[32]  R. Durrett,et al.  Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Ganal,et al.  A microsatellite map of wheat. , 1998, Genetics.

[34]  B Brinkmann,et al.  Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. , 1998, American journal of human genetics.

[35]  T. Wiehe The effect of selective sweeps on the variance of the allele distribution of a linked multiallele locus: hitchhiking of microsatellites. , 1998, Theoretical population biology.

[36]  M. Ganal,et al.  THE PHYSICAL MAPPING OF MICROSATELLITE MARKERS IN WHEAT , 1998 .

[37]  K. Wetterstrand,et al.  The distribution and frequency of microsatellite loci in Drosophila melanogaster , 1998, Molecular ecology.

[38]  T. Petes,et al.  Microsatellite instability in yeast: dependence on the length of the microsatellite. , 1997, Genetics.

[39]  D. Tautz,et al.  Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. , 1997, Genetics.

[40]  D N Stivers,et al.  Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Gill,et al.  Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. , 1996, Genetics.

[42]  P. Jarne,et al.  Microsatellites, from molecules to populations and back. , 1996, Trends in ecology & evolution.

[43]  Y. Michalakis,et al.  Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. , 1996, Genetics.

[44]  J. Messing,et al.  Characterization of a meiotic crossover in maize identified by a restriction fragment length polymorphism-based method. , 1996, Genetics.

[45]  Bikram S. Gill,et al.  The Deletion Stocks of Common Wheat , 1996 .

[46]  B. Charlesworth,et al.  The effect of recombination on background selection. , 1996, Genetical research.

[47]  M. Sorrells,et al.  Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). , 1996, Genome.

[48]  B. Gill,et al.  Cytologically based physical maps of the group 3 chromosomes of wheat , 1995, Theoretical and Applied Genetics.

[49]  J. Anderson,et al.  Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. , 1995, Genetics.

[50]  B. Gill,et al.  Cytologically based physical maps of the group-2 chromosomes of wheat , 1995, Theoretical and Applied Genetics.

[51]  B. Gill,et al.  A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes , 1995, Theoretical and Applied Genetics.

[52]  M. Sorrells,et al.  Molecular mapping of wheat. Homoeologous group 2. , 1995, Genome.

[53]  M. Sorrells,et al.  Molecular mapping of wheat. Homoeologous group 3. , 1995, Genome.

[54]  H. Ellegren Mutation rates at porcine microsatellite loci , 1995, Mammalian Genome.

[55]  J Dvorák,et al.  Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. , 1995, Genome.

[56]  B. Gill,et al.  Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. , 1994, Molecular and General Genetics MGG.

[57]  N. Freimer,et al.  Mutational processes of simple-sequence repeat loci in human populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[58]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[59]  J. Weber,et al.  Mutation of human short tandem repeats. , 1993, Human molecular genetics.

[60]  B. Gill,et al.  A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat , 1993, Chromosoma.

[61]  A. Lukaszewski,et al.  Physical distribution of recombination in B-genome chromosomes of tetraploid wheat , 1993, Theoretical and Applied Genetics.

[62]  H. Tachida,et al.  Persistence of repeated sequences that evolve by replication slippage. , 1992, Genetics.

[63]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[64]  M. Nei Molecular Evolutionary Genetics , 1987 .

[65]  T. Ohta,et al.  Stepwise mutation model and distribution of allelic frequencies in a finite population. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[66]  P. Moran,et al.  Wandering distributions and the electrophoretic profile. II. , 1975, Theoretical population biology.

[67]  M. Nei,et al.  THE BOTTLENECK EFFECT AND GENETIC VARIABILITY IN POPULATIONS , 1975, Evolution; international journal of organic evolution.

[68]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[69]  A. Cabrera,et al.  In-Situ Comparative Mapping (ISCM) of Glu-1 Loci in Triticum and Hordeum , 2004, Chromosome Research.

[70]  P. Roumet,et al.  Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp durum desf. , 2002, Molecular biology and evolution.

[71]  C. Schlötterer,et al.  Chromosomal patterns of microsatellite variability contrast sharply in African and non-African populations of Drosophila melanogaster. , 2002, Genetics.

[72]  M. Feldman,et al.  Mutation and migration in models of microsatellite evolution , 1999 .

[73]  J. Dvorak,et al.  Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species. , 1998, Genetics.

[74]  T. Mackay,et al.  Low mutation rates of microsatellite loci in Drosophila melanogaster , 1997, Nature Genetics.

[75]  B. Gill,et al.  Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. , 1996, Genetics.

[76]  P Donnelly,et al.  Coalescents and genealogical structure under neutrality. , 1995, Annual review of genetics.

[77]  R. Hudson Gene genealogies and the coalescent process. , 1990 .

[78]  P. Moran Wandering distributions and the electrophoretic profile. , 1975, Theoretical population biology.

[79]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.