Approximate Analytical Solution to the Zonal Harmonics Problem Using Koopman Operator Theory

This work introduces the use of the Koopman Operator Theory to generate analytical solutions for the zonal harmonics problem of a satellite orbiting a non spherical celestial body. Particularly, the solution proposed directly provides the osculating evolution of the system and can be automated to generate any approximation order to the solution. Moreover, this manuscript defines a modified set of orbital elements that can be applied to any kind of orbit and that allows the Koopman Operator to generate stable and accurate solutions. In that regard, several examples of application are included, showing that the proposed methodology can be used in any kind of orbit, including circular, elliptic, parabolic and hyperbolic orbits.

[1]  R. Linares,et al.  A set of orbital elements to fully represent the zonal harmonics around an oblate celestial body , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  J. Shan,et al.  Koopman-Operator-Based Attitude Dynamics and Control on SO(3) , 2020 .

[3]  A. Abad,et al.  Integration of Deprit's radial intermediary , 2020 .

[4]  M. Lara Solution to the main problem of the artificial satellite by reverse normalization , 2020, Nonlinear Dynamics.

[5]  David Arnas,et al.  Nominal definition of satellite constellations under the Earth gravitational potential , 2020, Celestial Mechanics and Dynamical Astronomy.

[6]  D. Arnas Linearized model for satellite station-keeping and tandem formations under the effects of atmospheric drag , 2020, Acta Astronautica.

[7]  Malcolm Macdonald,et al.  General Perturbation Method for Satellite Constellation Reconfiguration Using Low-Thrust Maneuvers , 2019, Journal of Guidance, Control, and Dynamics.

[8]  David Arnas,et al.  FLEX: A Parametric Study of Its Tandem Formation With Sentinel-3 , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  S. Vadali,et al.  Exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral harmonics , 2018 .

[10]  Amit Surana,et al.  Koopman operator based observer synthesis for control-affine nonlinear systems , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[11]  David Arnas,et al.  Relative and Absolute Station-Keeping for Two-Dimensional–Lattice Flower Constellations , 2016 .

[12]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[13]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[14]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[15]  Srinivas R. Vadali,et al.  Model for Linearized Satellite Relative Motion About a J2-Perturbed Mean Circular Orbit , 2009 .

[16]  Jean de Lafontaine,et al.  Linearized Dynamics of Formation Flying Spacecraft on a J2-Perturbed Elliptical Orbit , 2007 .

[17]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[18]  I. Michael Ross Linearized Dynamic Equations for Spacecraft Subject to J Perturbations , 2003 .

[19]  D. Scheeres,et al.  Stability Analysis of Planetary Satellite Orbiters: Application to the Europa Orbiter , 2001 .

[20]  Philip L. Palmer,et al.  Epicyclic Motion of Satellites About an Oblate Planet , 2001 .

[21]  J. San-Juan,et al.  Short Term Evolution of Artificial Satellites , 2001 .

[22]  Colin R. McInnes,et al.  Dynamics, Stability, and Control of Displaced Non-Keplerian Orbits , 1998 .

[23]  Alessandra Celletti,et al.  Non-integrability of the problem of motion around an oblate planet , 1995 .

[24]  Carles Simó,et al.  Non integrability of theJ2 problem , 1993 .

[25]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[26]  W. Steeb,et al.  Nonlinear dynamical systems and Carleman linearization , 1991 .

[27]  Bruce R. Miller,et al.  The critical inclination in artificial satellite theory , 1986 .

[28]  M. Sein-Echaluce,et al.  On the radial intermediaries and the time transformation in satellite theory , 1986 .

[29]  Kyle T. Alfriend,et al.  Elimination of the perigee in the satellite problem , 1984 .

[30]  A. Kamel,et al.  A second order solution of the main problem of artificial satellites using multiple scales , 1982 .

[31]  Shannon L. Coffey,et al.  Third-Order Solution to the Main Problem in Satellite Theory , 1982 .

[32]  R. H. Lyddane,et al.  Radius of convergence of Lie series for some elliptic elements , 1981 .

[33]  André Deprit,et al.  The elimination of the parallax in satellite theory , 1981 .

[34]  Andre Deprit,et al.  The Main Problem in the Theory of Artificial Satellites to Order Four , 1981 .

[35]  J.J.F. Liu,et al.  Satellite Motion about an Oblate Earth , 1974 .

[36]  André Deprit,et al.  The main problem of artificial satellite theory for small and moderate eccentricities , 1970 .

[37]  A. Kamel Perturbation method in the theory of nonlinear oscillations , 1970 .

[38]  A. Kamel Expansion formulae in canonical transformations depending on a small parameter , 1969 .

[39]  R. Broucke,et al.  Stability of periodic orbits in the elliptic restricted three-body problem. , 1969 .

[40]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[41]  R. H. Lyddane Small eccentricities or inclinations in the Brouwer theory of the artificial satellite , 1963 .

[42]  Yoshibide Kozai,et al.  Second-order solution of artificial satellite theory without air drag , 1962 .

[43]  Yoshihide Kozai,et al.  The motion of a close earth satellite , 1959 .

[44]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[45]  J. Neumann Zur Operatorenmethode In Der Klassischen Mechanik , 1932 .

[46]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Banaszuk,et al.  Linear observer synthesis for nonlinear systems using Koopman Operator framework , 2016 .

[48]  M. Humi J2 Effect in Cylindrical Coordinates. , 2007 .

[49]  A. Kamel,et al.  A second-order solution of the main problem of artificial satellitesusing multiple scales , 1985 .

[50]  André Deprit,et al.  Delaunay normalisations , 1982 .

[51]  G. Sell,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[52]  Ahmed Aly Kamel Perturbation method in the theory of nonlinear oscillations , 1970 .

[53]  Ilya Prigogine,et al.  Non-equilibrium statistical mechanics , 1962 .