On maximal antichains containing no set and its complement
暂无分享,去创建一个
[1] Daniel J. Kleitman,et al. Extensions of the Erd¨os-Ko-Rado theorem , 1976 .
[2] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[3] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[4] Béla Bollobás,et al. Sperner Systems Consisting of Pairs of Complementary Subsets , 1973, J. Comb. Theory, Ser. A.
[5] G. F. Clements. An Existence Theorem for Antichains , 1977, J. Comb. Theory, Ser. A.
[6] de Ng Dick Bruijn,et al. On the set of divisors of a number , 1951 .
[7] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[8] G. F. Clements,et al. A minimization problem concerning subsets of a finite set , 1973, Discret. Math..
[9] Gyula O. H. Katona,et al. Intersection theorems for systems of finite sets , 1964 .
[10] B. Lindström,et al. A Generalization of a Combinatorial Theorem of Macaulay , 1969 .
[11] E. C. Milner. A Combinatorial Theorem on Systems of Sets , 1968 .
[12] G. F. Clements. On existence of distinct representative sets for subsets of a finite set , 1970 .
[13] D. J. Kleitman. On an extremal property of antichains in partial orders , 1974 .
[14] L. D. Meshalkin. Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[15] D. Kleitman,et al. Proof techniques in the theory of finite sets , 1978 .
[16] L. D. Mesalkin. A Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[17] I. Anderson. On the Divisors of a Number , 1968 .