An insight into the science of unstructured meshes in computer numerical simulation

Computer numerical simulation is a beneficial tool for studying various domains of knowledge. Among the steps in the whole process of numerical simulation is the generation of unstructured meshes. Since the unstructured meshes are usually generated using automatic software, the fundamental knowledge of the unstructured meshes is often neglected. This paper highlighted some useful insights into the unstructured meshes in numerical simulation for several application domains, such as the radiative heat transfer problem, ocean modelling and biomedical engineering. It also reviewed some fundamental concepts and frameworks for element generation in producing unstructured meshes, particularly the Delaunay triangulation and advancing front techniques.

[1]  Tung-Shou Chen,et al.  Reversible data hiding using Delaunay triangulation and selective embedment , 2015, Inf. Sci..

[2]  Bart Merci,et al.  Gray/nongray gas radiation modeling in steam cracker CFD calculations , 2007 .

[3]  Jiri Blazek,et al.  Principles of Grid Generation , 2015 .

[4]  Paul-Louis George,et al.  The advancing-front mesh generation method revisited , 1994 .

[5]  S. Lo Delaunay triangulation of non-uniform point distributions by means of multi-grid insertion , 2013 .

[6]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[7]  Jie Chen,et al.  Research of Using Dynamic Programming in the Nodes Encoding Optimization , 2009, 2009 International Conference on Information Engineering and Computer Science.

[8]  Eric Seveno,et al.  Towards an Adaptive Advancing Front Method , 1997 .

[9]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[10]  Romualdas Bausys,et al.  Intelligent Initial Finite Element Mesh Generation for Solutions of 2D Problems , 2002, Informatica.

[11]  Vladimir D. Liseikin,et al.  Grid Generation Methods , 1999 .

[12]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[13]  Angel Plaza,et al.  There are simple and robust refinements (almost) as good as Delaunay , 2014, Math. Comput. Simul..

[14]  Joaquim B. Cavalcante Neto,et al.  A distributed-memory parallel technique for two-dimensional mesh generation for arbitrary domains , 2013, Adv. Eng. Softw..

[15]  M. Farrashkhalvat,et al.  Basic Structured Grid Generation: With an introduction to unstructured grid generation , 2003 .

[16]  Christopher C. Pain,et al.  Unstructured adaptive meshes for ocean modeling , 2013 .

[17]  Dimitri J. Mavriplis,et al.  Unstructured-Mesh Discretizations and Solvers for Computational Aerodynamics , 2007 .

[18]  Kazuhiro Nakahashi,et al.  Parallel unstructured mesh generation by an advancing front method , 2007, Math. Comput. Simul..

[19]  Yunlong Han,et al.  Combustion and Pyrolysis Reactions in a Naphtha Cracking Furnace , 2007 .

[20]  Hussein Mustapha,et al.  G23FM: a tool for meshing complex geological media , 2011 .

[21]  Qiyue Lu,et al.  Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes , 2014 .

[22]  Geraldine Heynderickx,et al.  Calculation of three-dimensional flow and pressure fields in cracking furnaces , 2003 .

[23]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[24]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[25]  Tong Qiu,et al.  Fluid dynamic numerical simulation coupled with heat transfer and reaction in the tubular reactor of industrial cracking furnaces , 2009 .

[26]  Shaharuddin Salleh,et al.  Enhanced Advancing Front Technique with extension cases for initial triangular mesh generation , 2011, WCE 2011.

[27]  Abd Samad Hasan Basari,et al.  Seven Cases Unstructured Triangulation Technique for Simplified Version of Conceptual Model of Ethylene Furnace for Radiative Heat Transfer Approximation , 2012 .

[28]  S. H. Lo Dynamic grid for mesh generation by the advancing front method , 2013 .

[29]  Philip J. Davis,et al.  THE RISE, FALL, AND POSSIBLE TRANSFIGURATION OF TRIANGLE GEOMETRY: A MINI-HISTORY , 1995 .

[30]  C C Pain,et al.  Anisotropic mesh adaptivity for multi-scale ocean modelling , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Malcolm Roberts,et al.  Developing the next-generation climate system models: challenges and achievements , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  R. Löhner,et al.  Progress in grid generation via the advancing front technique , 2005, Engineering with Computers.

[33]  Paulo R. M. Lyra,et al.  A computational methodology for automatic two-dimensional anisotropic mesh generation and adaptation , 2006 .

[34]  Ioannis K. Nikolos,et al.  Heuristic repairing operators for 3D tetrahedral mesh generation using the advancing-front technique , 2012, Adv. Eng. Softw..

[35]  Jean-Christophe Cuillière,et al.  Generalizing the advancing front method to composite surfaces in the context of meshing constraints topology , 2013, Comput. Aided Des..

[36]  Karstein Srli A Review of Computational Strategies for Complex Geometry and Physics , 2002 .

[37]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[38]  J. L. Alves,et al.  3D reconstruction of a spinal motion segment from 2D medical images: Objective quantification of the geometric accuracy of the FE mesh generation procedure , 2013, 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG).

[39]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[40]  Yan Liu,et al.  Boundary recovery for 3D Delaunay triangulation , 2014 .

[41]  Andrey N. Chernikov,et al.  Algorithm, software, and hardware optimizations for Delaunay mesh generation on simultaneous multithreaded architectures , 2009, J. Parallel Distributed Comput..

[42]  Shaharuddin Salleh,et al.  Extended Advancing Front Technique for the Initial Triangular Mesh Construction on a Single Coil for Radiative Heat Transfer , 2013 .

[43]  Qiang Wang,et al.  The Finite Element Sea ice-Ocean Model (FESOM): formulation of an unstructured-mesh ocean general circulation model , 2013 .

[44]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[45]  Guoliang Xu,et al.  A novel geometric flow approach for quality improvement of multi-component tetrahedral meshes , 2013, Comput. Aided Des..

[46]  Jin Zhu,et al.  Background Overlay Grid Size Functions , 2002, IMR.

[47]  Nikos Chrisochoides,et al.  High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations , 2013, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[48]  Mat Sidek,et al.  Al-Khawarizmi: Leading contributor to indigenisation of science in the Islamic civilization , 2012 .

[49]  Guy Marin,et al.  Challenges of Modeling Steam Cracking of Heavy Feedstocks , 2007 .

[50]  Jorge Estrada-Sarlabous,et al.  Isotropic umbrella based triangulation of regular parametric surfaces , 2008, Numerical Algorithms.

[51]  F Waterreus,et al.  SIMULATION TOOLS EVALUATE LARGE-CAPACITY FURNACE DESIGNS , 1998 .

[52]  Andrey N. Chernikov,et al.  Guaranteed Quality Tetrahedral Delaunay Meshing for Medical Images , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[53]  Huang Guihua,et al.  Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces , 2011 .

[54]  Nigel P. Weatherill,et al.  Parallel generation of unstructured surface grids , 2005, Engineering with Computers.

[55]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[56]  S. Stupak,et al.  Application of adaptive finite elements for solving elastic-plastic problem of SENB specimen , 2005 .

[57]  Michael D. Adams A highly-effective incremental/decremental Delaunay mesh-generation strategy for image representation , 2013, Signal Process..

[58]  Michael J. Holst,et al.  Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation , 2012, Comput. Aided Geom. Des..

[59]  S. Gotovac,et al.  A new front updating solution applied to some engineering problems , 2002 .

[60]  Lonie Gunasekarage,et al.  Power, and C. , 1996 .

[61]  Tolulope Olawale Okusanya,et al.  An algorithm for parallel unstructured mesh generation and flow analysis , 1996 .

[62]  W. X. Wang,et al.  Generation of triangular mesh with specified size by circle packing , 2007, Adv. Eng. Softw..

[63]  Nenad Filipovic,et al.  Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics , 2013, Comput. Biol. Medicine.

[64]  Alessandro Reali,et al.  Patient-specific aortic endografting simulation: From diagnosis to prediction , 2013, Comput. Biol. Medicine.

[65]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[66]  Mahmoud Bayat,et al.  INVESTIGATION OF TEMPERATURE AND FLOW FIELDS IN AN ALTERNATIVE DESIGN OF INDUSTRIAL CRACKING FURNACES USING CFD , 2010 .

[67]  Rainald Löhner,et al.  A 2nd Generation Parallel Advancing Front Grid Generator , 2013, IMR.

[68]  Michael J. Holst,et al.  Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation , 2013, Graph. Model..

[69]  Nigel P. Weatherill,et al.  A stitching method for the generation of unstructured meshes for use with co-volume solution techniques , 2006 .

[70]  J Peraire,et al.  Advancing Front Grid Generation , 1998 .

[71]  Amir A. Amini,et al.  A survey of shaped-based registration and segmentation techniques for cardiac images , 2013, Comput. Vis. Image Underst..

[72]  Jens Schröter,et al.  Modeling ocean circulation on unstructured meshes: comparison of two horizontal discretizations , 2008 .

[73]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[74]  Geraldine J. Heynderickx,et al.  Impact of radiation models in CFD simulations of steam cracking furnaces , 2007, Comput. Chem. Eng..