Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.

[1]  Y. Lam,et al.  A Proteomic Screen for Nucleolar SUMO Targets Shows SUMOylation Modulates the Function of Nop5/Nop58 , 2010, Molecular cell.

[2]  A. Deelder,et al.  Positively charged amino acids flanking a sumoylation consensus tetramer on the 110kDa tri-snRNP component SART1 enhance sumoylation efficiency. , 2010, Journal of proteomics.

[3]  J. Eriksson,et al.  In Vivo Identification of Sumoylation Sites by a Signature Tag and Cysteine-targeted Affinity Purification* , 2010, The Journal of Biological Chemistry.

[4]  Matthias Mann,et al.  A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed* , 2009, Molecular & Cellular Proteomics.

[5]  J Wade Harper,et al.  Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. , 2009, Molecular cell.

[6]  Henning Urlaub,et al.  “ChopNSpice,” a Mass Spectrometric Approach That Allows Identification of Endogenous Small Ubiquitin-like Modifier-conjugated Peptides , 2009, Molecular & Cellular Proteomics.

[7]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[8]  F. Blasi,et al.  Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition* , 2009, Molecular & Cellular Proteomics.

[9]  C. Lima,et al.  A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 Ubc9 , 2009, Nature Structural &Molecular Biology.

[10]  D. Koh,et al.  A Novel POK Family Transcription Factor, ZBTB5, Represses Transcription of p21CIP1 Gene* , 2009, The Journal of Biological Chemistry.

[11]  G. Barton,et al.  System-Wide Changes to SUMO Modifications in Response to Heat Shock , 2009, Science Signaling.

[12]  B. Jeon,et al.  ZBTB2, a Novel Master Regulator of the p53 Pathway* , 2009, The Journal of Biological Chemistry.

[13]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[14]  M. Mann,et al.  Global and site-specific quantitative phosphoproteomics: principles and applications. , 2009, Annual review of pharmacology and toxicology.

[15]  Sampsa Hautaniemi,et al.  Novel Proteomics Strategy Brings Insight into the Prevalence of SUMO-2 Target Sites* , 2009, Molecular & Cellular Proteomics.

[16]  Patrick G. A. Pedrioli,et al.  Using mass spectrometry to identify ubiquitin and ubiquitin‐like protein conjugation sites , 2009, Proteomics.

[17]  Tharan Srikumar,et al.  Global map of SUMO function revealed by protein-protein interaction and genetic networks. , 2009, Molecular cell.

[18]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[19]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[20]  M. Mann,et al.  Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. , 2008, Molecular cell.

[21]  U. Landegren,et al.  Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. , 2008, Methods.

[22]  Erik Meulmeester,et al.  Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. , 2008, Molecular cell.

[23]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[24]  V. Wilson,et al.  Ubiquitin proteolytic system: focus on SUMO , 2008, Expert review of proteomics.

[25]  Zeinab Anvarian,et al.  Identification of a New Site of Sumoylation on Tel (ETV6) Uncovers a PIAS-Dependent Mode of Regulating Tel Function , 2008, Molecular and Cellular Biology.

[26]  M. Mann,et al.  In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy*S , 2008, Molecular & Cellular Proteomics.

[27]  F. Melchior,et al.  Concepts in sumoylation: a decade on , 2007, Nature Reviews Molecular Cell Biology.

[28]  M. Mann,et al.  PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites , 2007, Genome Biology.

[29]  M. MacCoss,et al.  Quantitative Profiling of Ubiquitylated Proteins Reveals Proteasome Substrates and the Substrate Repertoire Influenced by the Rpn10 Receptor Pathway*S , 2007, Molecular & Cellular Proteomics.

[30]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[31]  Hye-Jin Park,et al.  TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. , 2007, Journal of proteome research.

[32]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[33]  M. Mann,et al.  Is Proteomics the New Genomics? , 2007, Cell.

[34]  R. Hay,et al.  SUMO-specific proteases: a twist in the tail. , 2007, Trends in cell biology.

[35]  M. Dasso,et al.  Modification in reverse: the SUMO proteases. , 2007, Trends in biochemical sciences.

[36]  A. Ganesan,et al.  Broad spectrum identification of SUMO substrates in melanoma cells , 2007, Proteomics.

[37]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[38]  M. Mann,et al.  Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics*S , 2006, Molecular & Cellular Proteomics.

[39]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[40]  A. Sharrocks,et al.  An extended consensus motif enhances the specificity of substrate modification by SUMO , 2006, The EMBO journal.

[41]  U. Landegren,et al.  Direct observation of individual endogenous protein complexes in situ by proximity ligation , 2006, Nature Methods.

[42]  P. B. Chock,et al.  A general approach for investigating enzymatic pathways and substrates for ubiquitin-like modifiers. , 2006, Archives of biochemistry and biophysics.

[43]  Brian Raught,et al.  Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software , 2006, Nature Methods.

[44]  J. Yates,et al.  Improved identification of SUMO attachment sites using C-terminal SUMO mutants and tailored protease digestion strategies. , 2006, Journal of proteome research.

[45]  L. Sistonen,et al.  PDSM, a motif for phosphorylation-dependent SUMO modification. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Mann,et al.  Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-trap*S , 2005, Molecular & Cellular Proteomics.

[47]  Xuedong Liu,et al.  A Method of Mapping Protein Sumoylation Sites by Mass Spectrometry Using a Modified Small Ubiquitin-like Modifier 1 (SUMO-1) and a Computational Program*S , 2005, Molecular & Cellular Proteomics.

[48]  G. Gill,et al.  Something about SUMO inhibits transcription. , 2005, Current opinion in genetics & development.

[49]  Steven P. Gygi,et al.  A Proteomic Strategy for Gaining Insights into Protein Sumoylation in Yeast*S , 2005, Molecular & Cellular Proteomics.

[50]  Hongtao Yu,et al.  Systematic Identification and Analysis of Mammalian Small Ubiquitin-like Modifier Substrates* , 2005, Journal of Biological Chemistry.

[51]  David H Russell,et al.  A Universal Strategy for Proteomic Studies of SUMO and Other Ubiquitin-like Modifiers*S , 2005, Molecular & Cellular Proteomics.

[52]  K. Wells,et al.  Global shifts in protein sumoylation in response to electrophile and oxidative stress. , 2004, Chemical research in toxicology.

[53]  Matthias Mann,et al.  A Proteomic Study of SUMO-2 Target Proteins* , 2004, Journal of Biological Chemistry.

[54]  Tao Wang,et al.  Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. White,et al.  Broad Spectrum Identification of Cellular Small Ubiquitin-related Modifier (SUMO) Substrate Proteins* , 2004, Journal of Biological Chemistry.

[56]  Hiroshi Suzuki,et al.  Repression of PML Nuclear Body-Associated Transcription by Oxidative Stress-Activated Bach2 , 2004, Molecular and Cellular Biology.

[57]  S. Elledge,et al.  BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3 , 2003, Nature.

[58]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[59]  L. Zon,et al.  SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. , 2002, Molecular cell.

[60]  E. Kalkhoven,et al.  The PHD Type Zinc Finger Is an Integral Part of the CBP Acetyltransferase Domain , 2002, Molecular and Cellular Biology.

[61]  Christopher D. Lima,et al.  Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1 , 2002, Cell.

[62]  Hui Li,et al.  SMRTe Inhibits MEF2C Transcriptional Activation by Targeting HDAC4 and 5 to Nuclear Domains* , 2001, The Journal of Biological Chemistry.

[63]  Hui Li,et al.  SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  G. Blobel,et al.  SUMO-1 Modification and Its Role in Targeting the Ran GTPase-activating Protein, RanGAP1, to the Nuclear Pore Complex , 1998, The Journal of cell biology.

[65]  F. Melchior,et al.  Molecular Characterization of the SUMO-1 Modification of RanGAP1 and Its Role in Nuclear Envelope Association , 1998, The Journal of cell biology.

[66]  J. Licht,et al.  Sequence-specific DNA Binding and Transcriptional Regulation by the Promyelocytic Leukemia Zinc Finger Protein* , 1997, The Journal of Biological Chemistry.

[67]  D. Leprince,et al.  The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomous repressing domain. , 1995, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[68]  V. Chatterjee,et al.  Functional analysis of a transactivation domain in the thyroid hormone beta receptor. , 1994, The Journal of biological chemistry.

[69]  K. Kamiya,et al.  Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. , 1993, Nucleic acids research.

[70]  Jürgen Cox,et al.  A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics , 2009, Nature Protocols.

[71]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[72]  N. Perkins,et al.  Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1. , 2000, The Journal of biological chemistry.