Quantitative Evidence for Lanthanide-Oxygen Orbital Mixing in CeO2, PrO2, and TbO2.

Understanding the nature of covalent (band-like) vs ionic (atomic-like) electrons in metal oxides continues to be at the forefront of research in the physical sciences. In particular, the development of a coherent and quantitative model of bonding and electronic structure for the lanthanide dioxides, LnO2 (Ln = Ce, Pr, and Tb), has remained a considerable challenge for both experiment and theory. Herein, relative changes in mixing between the O 2p orbitals and the Ln 4f and 5d orbitals in LnO2 are evaluated quantitatively using O K-edge X-ray absorption spectroscopy (XAS) obtained with a scanning transmission X-ray microscope and density functional theory (DFT) calculations. For each LnO2, the results reveal significant amounts of Ln 5d and O 2p mixing in the orbitals of t2g (σ-bonding) and eg (π-bonding) symmetry. The remarkable agreement between experiment and theory also shows that significant mixing with the O 2p orbitals occurs in a band derived from the 4f orbitals of a2u symmetry (σ-bonding) for each compound. However, a large increase in orbital mixing is observed for PrO2 that is ascribed to a unique interaction derived from the 4f orbitals of t1u symmetry (σ- and π-bonding). O K-edge XAS and DFT results are compared with complementary L3-edge and M5,4-edge XAS measurements and configuration interaction calculations, which shows that each spectroscopic approach provides evidence for ground state O 2p and Ln 4f orbital mixing despite inducing very different core-hole potentials in the final state.

[1]  G. Scuseria,et al.  Electronic Structure and Properties of Berkelium Iodates. , 2017, Journal of the American Chemical Society.

[2]  V. Ozoliņš,et al.  Giant onsite electronic entropy enhances the performance of ceria for water splitting , 2017, Nature Communications.

[3]  F. Neese,et al.  Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. , 2017, Inorganic chemistry.

[4]  Conrad A. P. Goodwin,et al.  Investigation into the Effects of a Trigonal-Planar Ligand Field on the Electronic Properties of Lanthanide(II) Tris(silylamide) Complexes (Ln = Sm, Eu, Tm, Yb). , 2017, Inorganic chemistry.

[5]  M. Zeller,et al.  Elucidating bonding preferences in tetrakis(imido)uranate(VI) dianions. , 2017, Nature chemistry.

[6]  A. Juan,et al.  Redox behavior of a low-doped Pr-CeO2(111) surface. A DFT+U study , 2017 .

[7]  S. Du,et al.  Rare earth separations by selective borate crystallization , 2017, Nature Communications.

[8]  D. Heermann,et al.  A Three-Pronged Attack To Investigate the Electronic Structure of a Family of Ferromagnetic Fe4Ln2 Cyclic Coordination Clusters: A Combined Magnetic Susceptibility, High-Field/High-Frequency Electron Paramagnetic Resonance, and 57Fe Mössbauer Study. , 2017, Inorganic chemistry.

[9]  P. Carroll,et al.  Cerium(IV) Imido Complexes: Structural, Computational, and Reactivity Studies. , 2017, Journal of the American Chemical Society.

[10]  A. J. Blake,et al.  The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes , 2017 .

[11]  Jonathan L. Brosmer,et al.  Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated DyIII Single-Molecule Magnets. , 2017, Journal of the American Chemical Society.

[12]  Daniel S. Levine,et al.  Evidence for the Existence of Group 3 Terminal Methylidene Complexes , 2017 .

[13]  Guang Wu,et al.  Formation of a Ce(IV) Oxo Complex via Inner Sphere Nitrate Reduction. , 2016, Journal of the American Chemical Society.

[14]  S. Kauzlarich,et al.  Tuning Magnetism of [MnSb4](9-) Cluster in Yb14MnSb11 through Chemical Substitutions on Yb Sites: Appearance and Disappearance of Spin Reorientation. , 2016, Journal of the American Chemical Society.

[15]  N. Chilton,et al.  A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier. , 2016, Angewandte Chemie.

[16]  W. Lukens,et al.  The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study. , 2016, Dalton transactions.

[17]  T. Tyliszczak,et al.  A Macrocyclic Chelator That Selectively Binds Ln4+ over Ln3+ by a Factor of 1029. , 2016, Inorganic chemistry.

[18]  Jian Wang,et al.  Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy. , 2016, Dalton transactions.

[19]  P. Carroll,et al.  An Alkali Metal-Capped Cerium(IV) Imido Complex. , 2016, Journal of the American Chemical Society.

[20]  Ian D. Williams,et al.  Probing the Reactivity of the Ce═O Multiple Bond in a Cerium(IV) Oxo Complex. , 2016, Inorganic chemistry.

[21]  Matteo Monai,et al.  Fundamentals and Catalytic Applications of CeO2-Based Materials. , 2016, Chemical reviews.

[22]  J. Rehr,et al.  Particle-hole cumulant approach for inelastic losses in x-ray spectra , 2016, 1604.06829.

[23]  P. Carroll,et al.  Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework. , 2015, Chemistry.

[24]  R. A. Souza,et al.  Computational Study of Cation Diffusion in Ceria , 2015 .

[25]  J. Ziller,et al.  Ligand Effects in the Synthesis of Ln2+ Complexes by Reduction of Tris(cyclopentadienyl) Precursors Including C–H Bond Activation of an Indenyl Anion , 2015 .

[26]  Katie R. Meihaus,et al.  Record High Single-Ion Magnetic Moments Through 4f(n)5d(1) Electron Configurations in the Divalent Lanthanide Complexes [(C5H4SiMe3)3Ln]⁻. , 2015, Journal of the American Chemical Society.

[27]  A. Powell,et al.  Tetranuclear and Pentanuclear Compounds of the Rare-Earth Metals: Synthesis and Magnetism. , 2015, Inorganic chemistry.

[28]  E. Hemmer,et al.  Templating Influence of Molecular Precursors on Pr(OH)3 Nanostructures. , 2015, Inorganic chemistry.

[29]  H. Dai,et al.  Three-dimensionally ordered macroporous Pr6O11 and Tb4O7 with mesoporous walls: Preparation, characterization, and catalytic activity for CO oxidation , 2015 .

[30]  William L. Boncher,et al.  Europium chalcogenide magnetic semiconductor nanostructures , 2015 .

[31]  Christoph Schädle,et al.  Rare‐Earth Metal Complexes with Terminal Imido Ligands , 2015 .

[32]  Wenliang Huang,et al.  Tetraanionic biphenyl lanthanide complexes as single-molecule magnets. , 2015, Inorganic chemistry.

[33]  T. Tyliszczak,et al.  Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6(x-) (x = 3, 2). , 2015, Journal of the American Chemical Society.

[34]  M. Sfeir,et al.  Ultrathin Europium Oxide Nanoplatelets: “Hidden” Parameters and Controlled Synthesis, Unusual Crystal Structure, and Photoluminescence Properties , 2015 .

[35]  J. Ziller,et al.  Structural, spectroscopic, and theoretical comparison of traditional vs recently discovered Ln(2+) ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes: the variable nature of Dy(2+) and Nd(2+). , 2015, Journal of the American Chemical Society.

[36]  J. Long,et al.  Exchange coupling and magnetic blocking in dilanthanide complexes bridged by the multi-electron redox-active ligand 2,3,5,6-tetra(2-pyridyl)pyrazine , 2014 .

[37]  M. Swaminathan,et al.  Facile hydrothermal synthesis of a highly efficient solar active Pr6O11–ZnO photocatalyst and its multiple applications , 2014 .

[38]  T. Tyliszczak,et al.  Electronic structure and O K-edge XAS spectroscopy of U3O8 , 2014 .

[39]  Liviu F Chibotaru,et al.  Fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet. , 2014, Angewandte Chemie.

[40]  Katie R. Meihaus,et al.  Influence of pyrazolate vs N-heterocyclic carbene ligands on the slow magnetic relaxation of homoleptic trischelate lanthanide(III) and uranium(III) complexes. , 2014, Journal of the American Chemical Society.

[41]  M. Shatruk,et al.  Challenges in the Search for Magnetic Coupling in 3d/4f Materials: Syntheses, Structures, and Magnetic Properties of the Lanthanide Copper Heterobimetallic Compounds, RE2Cu(TeO3)2(SO4)2 , 2014 .

[42]  G. Seidler,et al.  Direct observation of 4f intrashell excitation in luminescent Eu complexes by time-resolved X-ray absorption near edge spectroscopy. , 2014, Journal of the American Chemical Society.

[43]  Ian D. Williams,et al.  A tetravalent cerium complex containing a Ce=O bond. , 2014, Angewandte Chemie.

[44]  M. Shishkin,et al.  Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview. , 2014, Physical chemistry chemical physics : PCCP.

[45]  A. Pathak,et al.  Understanding and prediction of electronic-structure-driven physical behaviors in rare-earth compounds , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  L. Maron,et al.  Influence of the Torsion Angle in 3,3'-Dimethyl-2,2'-bipyridine on the Intermediate Valence of Yb in (C5Me5)2 Yb(3,3'-Me2-bipy) , 2013 .

[47]  Richard L. Martin,et al.  Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides. , 2013, Journal of the American Chemical Society.

[48]  G. Scuseria,et al.  A Screened Hybrid DFT Study of Actinide Oxides, Nitrides, and Carbides , 2013 .

[49]  A. Kotani CORE-HOLE EFFECT IN THE Ce L3 X-RAY ABSORPTION SPECTRA OF CeO2 AND CeFe2: NEW EXAMINATION BY USING RESONANT X-RAY EMISSION SPECTROSCOPY , 2013 .

[50]  W. Stolte,et al.  HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY , 2013, 1305.4983.

[51]  J. Gordon,et al.  Complexes containing multiple bonding interactions between lanthanoid elements and main-group fragments , 2013 .

[52]  G. Schreckenbach,et al.  Oxo-functionalization and reduction of the uranyl ion through lanthanide-element bond homolysis: synthetic, structural, and bonding analysis of a series of singly reduced uranyl-rare earth 5f1-4f(n) complexes. , 2013, Journal of the American Chemical Society.

[53]  Richard L. Martin,et al.  Density functional theory studies of the electronic structure of solid state actinide oxides. , 2013, Chemical reviews.

[54]  T. Tyliszczak,et al.  Covalency in metal-oxygen multiple bonds evaluated using oxygen K-edge spectroscopy and electronic structure theory. , 2013, Journal of the American Chemical Society.

[55]  G. Scuseria,et al.  Screened hybrid and DFT + U studies of the structural, electronic, and optical properties of U3O8 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  Richard L. Martin,et al.  Covalency in f-element complexes , 2013 .

[57]  B. Scott,et al.  Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy. , 2013, Journal of the American Chemical Society.

[58]  F. Edelmann Lanthanide amidinates and guanidinates in catalysis and materials science: a continuing success story. , 2012, Chemical Society reviews.

[59]  R. Kempe,et al.  f-Element-metal bonding and the use of the bond polarity to build molecular intermetalloids. , 2012, Chemistry.

[60]  G. Scuseria,et al.  Effect of spin-orbit coupling on the actinide dioxides AnO2 (An=Th, Pa, U, Np, Pu, and Am): a screened hybrid density functional study. , 2012, The Journal of chemical physics.

[61]  G. Meyer,et al.  Synthesis of Lanthanide and Actinide Compounds , 2012 .

[62]  John Robertson,et al.  Nature of the electronic band gap in lanthanide oxides. , 2012, 1208.0503.

[63]  P. Glatzel,et al.  Spectator and participator processes in the resonant photon-in and photon-out spectra at the Ce L3 edge of CeO2 , 2012 .

[64]  G. Girolami,et al.  Lanthanide N,N-dimethylaminodiboranates as a new class of highly volatile chemical vapor deposition precursors. , 2012, Inorganic chemistry.

[65]  Richard L. Martin,et al.  Determining relative f and d orbital contributions to M-Cl covalency in MCl6(2-) (M = Ti, Zr, Hf, U) and UOCl5(-) using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. , 2012, Journal of the American Chemical Society.

[66]  H. Gray,et al.  Electronic Structures of Oxo-Metal Ions , 2011 .

[67]  J. Verbeeck,et al.  High resolution mapping of surface reduction in ceria nanoparticles. , 2011, Nanoscale.

[68]  D. Dixon,et al.  Infrared Spectra and Quantum Chemical Calculations of the Bridge-Bonded HC(F)LnF2 (Ln = La–Lu) Complexes , 2011 .

[69]  P. Glatzel,et al.  Direct study of the f-electron configuration in lanthanide systems , 2011 .

[70]  P. Glatzel,et al.  A new method of directly determining the core–hole effect in the Ce L3 XAS of mixed valence Ce compounds—An application of resonant X-ray emission spectroscopy , 2011 .

[71]  G. Scuseria,et al.  Accurate treatment of solids with the HSE screened hybrid , 2011 .

[72]  R. Caciuffo,et al.  Single-electron uranyl reduction by a rare-earth cation. , 2011, Angewandte Chemie.

[73]  Shouheng Sun,et al.  Monodisperse CeO2 Nanoparticles and Their Oxygen Storage and Release Properties , 2011 .

[74]  S. Minasian,et al.  Covalent lanthanide chemistry near the limit of weak bonding: observation of (CpSiMe3)3Ce-ECp* and a comprehensive density functional theory analysis of Cp3Ln-ECp (E = Al, Ga). , 2011, Inorganic chemistry.

[75]  F. D. de Groot,et al.  The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. , 2010, Micron.

[76]  T. Tyliszczak,et al.  Experimental and theoretical comparison of the O K-edge nonresonant inelastic X-ray scattering and X-ray absorption spectra of NaReO4. , 2010, Journal of the American Chemical Society.

[77]  M. Bäumer,et al.  Nanostructured Praseodymium Oxide: Correlation Between Phase Transitions and Catalytic Activity , 2010 .

[78]  A. Kerridge,et al.  All-electron CASPT2 study of Ce(η8–C8H6)2 , 2010 .

[79]  B. Scott,et al.  Comparative study of f-element electronic structure across a series of multimetallic actinide and lanthanoid-actinide complexes possessing redox-active bridging ligands. , 2010, Inorganic chemistry.

[80]  A. Hitchcock,et al.  Optimization of analysis of soft X-ray spectromicroscopy at the Ca 2p edge , 2009 .

[81]  S. Carretta,et al.  Low-energy Spectrum of a Tm-based Double-decker Complex , 2009 .

[82]  M. Scheffler,et al.  Localized and itinerant states in lanthanide oxides united by GW @ LDA+U. , 2009, Physical review letters.

[83]  Hongjun Fan,et al.  Lewis acid stabilized methylidene and oxoscandium complexes. , 2008, Journal of the American Chemical Society.

[84]  Akio Kotani,et al.  Core Level Spectroscopy of Solids , 2008 .

[85]  K. Schwarz,et al.  PBE+U calculations of the Jahn-Teller effect in PrO2 , 2008 .

[86]  Jason D. Masuda,et al.  A lanthanide phosphinidene complex: synthesis, structure, and phospha-Wittig reactivity. , 2008, Journal of the American Chemical Society.

[87]  S. Kucheyev,et al.  Electronic structure of nanoporous ceria from x-ray absorption spectroscopy and atomic multiplet calculations , 2007 .

[88]  G. Scuseria,et al.  Covalency in the actinide dioxides: Systematic study of the electronic properties using screened hybrid density functional theory , 2007 .

[89]  Georg Kresse,et al.  Hybrid functionals applied to rare-earth oxides: The example of ceria , 2007 .

[90]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[91]  B. Johansson,et al.  Modeling of CeO2, Ce2O3, and CeO2−x in the LDA+U formalism , 2007 .

[92]  H. Gray,et al.  Electronic structures of trans-dioxometal complexes. , 2006, Dalton transactions.

[93]  Gustavo E Scuseria,et al.  Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. , 2006, The Journal of chemical physics.

[94]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[95]  D. Shuh,et al.  Uranium oxides investigated by X-ray absorption and emission spectroscopies , 2006, 1102.4242.

[96]  D. F. Ogletree,et al.  Soft X-ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source , 2006 .

[97]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[98]  G. Waldo,et al.  A method for normalization of X-ray absorption spectra. , 2005, Journal of synchrotron radiation.

[99]  M. Walter,et al.  Self-contained Kondo effect in single molecules. , 2005, Physical review letters.

[100]  E. Solomon,et al.  Metal and ligand K-edge XAS of organotitanium complexes: metal 4p and 3d contributions to pre-edge intensity and their contributions to bonding. , 2005, Journal of the American Chemical Society.

[101]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[102]  M. Dolg,et al.  Theoretical prediction of the second to fourth actinide ionization potentials , 2003 .

[103]  N. Brookes,et al.  Covalency in the uranyl ion: A polarized x-ray spectroscopic study , 2002 .

[104]  C. Clark,et al.  The First Example of a μ2-Imido Functionality Bound to a Lanthanide Metal Center: X-ray Crystal Structure and DFT Study of [(μ-ArN)Sm(μ-NHAr)(μ-Me)AlMe2]2 (Ar = 2,6-iPr2C6H3)1 , 2002 .

[105]  P. Strange,et al.  Simple rules for determining valencies of f-electron systems , 2001 .

[106]  A. Kovalevsky,et al.  Ceria-based materials for solid oxide fuel cells , 2001 .

[107]  Zhiwei Hu,et al.  Ln-4f/ligand-2p covalence in BaLnO3 and Cs3LnF7 (Ln=Ce, Pr, Tb) , 2000 .

[108]  P. Buseck,et al.  Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy , 1999 .

[109]  K. Hodgson,et al.  Relationship between the Dipole Strength of Ligand Pre-Edge Transitions and Metal-Ligand Covalency. , 1999, Inorganic chemistry.

[110]  F. Jollet,et al.  X-ray absorption at the oxygen K edge in cubic f oxides examined using a full multiple-scattering approach , 1999 .

[111]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[112]  K. Hodgson,et al.  Ligand K-edge X-ray absorption spectroscopic studies. Metal-ligand covalency in a series of transition metal tetrachlorides , 1995 .

[113]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[114]  K. Hodgson,et al.  Ligand K-edge x-ray absorption spectroscopy as a probe of ligand-metal bonding: Charge donation and covalency in copper-chloride systems , 1994 .

[115]  Ivanchenko,et al.  Crystal-structure effects in the Ce L3-edge x-ray-absorption spectrum of CeO2: Multiple-scattering resonances and many-body final states. , 1994, Physical review. B, Condensed matter.

[116]  A. Kotani,et al.  Theory of core-level spectroscopy of rare-earth oxides , 1992 .

[117]  T. Marks,et al.  Organo-f-element bonding energetics. Large magnitudes of metal arene bond enthalpies in zero-valent lanthanide sandwich complexes , 1992 .

[118]  M. Gasgnier,et al.  Preparation, crystalline properties and X-ray absorption spectra of rare earth oxides ROx (R ≡ Ce, PrandTb; 1.5 ⩽ x ⩽ 2) , 1989 .

[119]  Jo.,et al.  Effect of valence mixing on multiplet structures in core photoabsorption spectra for Ce compounds. , 1988, Physical review. B, Condensed matter.

[120]  Caro,et al.  X-ray absorption studies of CeO2, PrO2, and TbO2. II. Rare-earth valence state by LIII absorption edges. , 1987, Physical review. B, Condensed matter.

[121]  Bianconi,et al.  Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption. , 1987, Physical review. B, Condensed matter.

[122]  C. Hogarth,et al.  Optical Absorption in Thin Films of Cerium Dioxide and Cerium Dioxide Containing Silicon Monoxide , 1986 .

[123]  G. Sawatzky,et al.  3d x-ray-absorption lines and the 3d94fn+1 multiplets of the lanthanides. , 1985, Physical review. B, Condensed matter.

[124]  W. Brewer,et al.  M‐edge x‐ray absorption spectroscopy of 4f instabilities in rare‐earth systems (invited) , 1984 .

[125]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[126]  W. C. Martin,et al.  Atomic Energy Levels - The Rare-Earth Elements. The Spectra of Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, and Lutetium, , 1978 .

[127]  L. Morss Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions , 1976 .

[128]  L. Mattheiss Electronic structure of RuO 2 , OsO 2 , and IrO 2 , 1976 .

[129]  H. E. Hoefdraad Charge-transfer spectra of tetravalent lanthanide ions in oxides , 1975 .

[130]  Olavi Keski-Rahkonen,et al.  Total and Partial Atomic-Level Widths , 1974 .

[131]  L. Brewer Energies of the Electronic Configurations of the Singly, Doubly, and Triply Ionized Lanthanides and Actinides , 1971 .

[132]  W. H. McMaster,et al.  Compilation of x-ray cross sections UCRL-50174, sections I, II revision 1, III, IV* , 1970 .

[133]  G. Brauer,et al.  Hydrolytische spaltung von höheren oxiden des Praseodyms und des terbiums , 1963 .

[134]  R. E. Watson,et al.  Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions , 1962 .

[135]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[136]  Richard L. Martin,et al.  New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory , 2014 .

[137]  D. Mindiola,et al.  Carbenes and alkylidenes: Spot the difference. , 2011, Nature chemistry.

[138]  Edward I. Solomon,et al.  Ligand K-edge x-ray absorption spectroscopy: Covalency of ligand-metal bonds , 2005 .

[139]  Frank M. F. de Groot,et al.  Multiplet effects in X-ray spectroscopy , 2005 .

[140]  G. Blanco,et al.  Oxygen buffering capacity of mixed cerium terbium oxide: a new material with potential applications in three-way catalysts , 1997 .

[141]  C. Colliex,et al.  Quantitative electron energy loss spectroscopy on M45 edges in rare earth oxides , 1990 .

[142]  Myung-Hwan Whangbo,et al.  Orbital Interactions in Chemistry , 1985 .

[143]  Harry B. Gray,et al.  Chemical structure and bonding , 1980 .

[144]  R. Zalubas,et al.  Atomic energy levels - The rare-Earth elements , 1974 .

[145]  Andreas C Scheinost,et al.  Emergence of Comparable Covalency in Isostructural Cerium ( IV ) -‐ and Uranium ( IV ) -‐ , 2017 .