Temperature dependence of the tunneling amplitude between quantum hall edges.

Recent experiments have studied the tunneling current between the edges of a fractional quantum Hall liquid as a function of temperature and voltage. The results of the experiment are puzzling because at "high" temperature (600-900 mK) the behavior of the tunneling conductance is consistent with the theory of tunneling between chiral Luttinger liquids, but at low temperature it strongly deviates from that prediction dropping to zero with decreasing temperature. In this Letter we suggest a possible explanation of this behavior in terms of the strong temperature dependence of the tunneling amplitude.