Explaining Natural Language Processing Classifiers with Occlusion and Language Modeling

[1]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[2]  Been Kim,et al.  Sanity Checks for Saliency Maps , 2018, NeurIPS.

[3]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[4]  G. Yule On the Methods of Measuring Association between Two Attributes , 1912 .

[5]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[6]  Marko Robnik-Sikonja,et al.  Explaining Classifications For Individual Instances , 2008, IEEE Transactions on Knowledge and Data Engineering.

[7]  Tony R. Martinez,et al.  The general inefficiency of batch training for gradient descent learning , 2003, Neural Networks.

[8]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[9]  Gonçalo Simões,et al.  Morphosyntactic Tagging with a Meta-BiLSTM Model over Context Sensitive Token Encodings , 2018, ACL.

[10]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[11]  Yoshua Bengio,et al.  A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..

[12]  Naftali Tishby,et al.  Deep learning and the information bottleneck principle , 2015, 2015 IEEE Information Theory Workshop (ITW).

[13]  Thomas Simpson Essays on several curious and useful subjects, in speculative and mix'd mathematics : illustrated by a variety of examples , 1972 .

[14]  Seth Flaxman,et al.  European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation" , 2016, AI Mag..

[15]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[16]  Dale T. Miller,et al.  Norm theory: Comparing reality to its alternatives , 1986 .

[17]  Martin Wattenberg,et al.  Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) , 2017, ICML.

[18]  Yuval Pinter,et al.  Attention is not not Explanation , 2019, EMNLP.

[19]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[20]  Omer Levy,et al.  GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding , 2018, BlackboxNLP@EMNLP.

[21]  Luo Si,et al.  StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding , 2019, ICLR.

[22]  Kevin Gimpel,et al.  Charagram: Embedding Words and Sentences via Character n-grams , 2016, EMNLP.

[23]  Michael I. Jordan,et al.  Artificial Intelligence—The Revolution Hasn’t Happened Yet , 2019, Issue 1.

[24]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[25]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[26]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[27]  T. Hayton The Advanced Theory of Statistics, Vol. 3 , 1968 .

[28]  Byron C. Wallace,et al.  Attention is not Explanation , 2019, NAACL.

[29]  Klaus-Robert Müller,et al.  "What is relevant in a text document?": An interpretable machine learning approach , 2016, PloS one.

[30]  Robert L. Mercer,et al.  An Estimate of an Upper Bound for the Entropy of English , 1992, CL.

[31]  Kyle Gorman,et al.  We Need to Talk about Standard Splits , 2019, ACL.

[32]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[33]  T. Lombrozo The structure and function of explanations , 2006, Trends in Cognitive Sciences.

[34]  R. Byrne Précis of The Rational Imagination: How People Create Alternatives to Reality , 2007, Behavioral and Brain Sciences.

[35]  Aleksander Madry,et al.  Adversarial Examples Are Not Bugs, They Are Features , 2019, NeurIPS.

[36]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[37]  Ellen M. Voorhees,et al.  Building a question answering test collection , 2000, SIGIR '00.

[38]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[39]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[40]  Xinlei Chen,et al.  Visualizing and Understanding Neural Models in NLP , 2015, NAACL.

[41]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[42]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[43]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[44]  N. Roese,et al.  What Might Have Been: The Social Psychology of Counterfactual Thinking , 1995 .

[45]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[46]  Liwei Wang,et al.  The Expressive Power of Neural Networks: A View from the Width , 2017, NIPS.

[47]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[48]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[49]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[50]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[51]  Klaus Kofler,et al.  Performance and Scalability of GPU-Based Convolutional Neural Networks , 2010, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.

[52]  Klaus-Robert Müller,et al.  Learning how to explain neural networks: PatternNet and PatternAttribution , 2017, ICLR.

[53]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[54]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[55]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[56]  Quanshi Zhang,et al.  Interpretable Convolutional Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[57]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[58]  Cengiz Öztireli,et al.  Towards better understanding of gradient-based attribution methods for Deep Neural Networks , 2017, ICLR.

[59]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[60]  Eric D. Ragan,et al.  A Human-Grounded Evaluation Benchmark for Local Explanations of Machine Learning , 2018, ArXiv.

[61]  Warren S. Sarle,et al.  Neural Networks and Statistical Models , 1994 .

[62]  Demis Hassabis,et al.  A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play , 2018, Science.

[63]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[64]  Yonatan Belinkov,et al.  Linguistic Knowledge and Transferability of Contextual Representations , 2019, NAACL.

[65]  Janet M. Baker,et al.  The Design for the Wall Street Journal-based CSR Corpus , 1992, HLT.

[66]  Matthias Bethge,et al.  Generalisation in humans and deep neural networks , 2018, NeurIPS.

[67]  H. Robbins A Stochastic Approximation Method , 1951 .

[68]  Boris Hanin,et al.  Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations , 2017, Mathematics.

[69]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[70]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[71]  Sanja Fidler,et al.  Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[72]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[73]  Max Welling,et al.  Visualizing Deep Neural Network Decisions: Prediction Difference Analysis , 2017, ICLR.

[74]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[75]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[76]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[77]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[78]  Omer Levy,et al.  SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems , 2019, NeurIPS.

[79]  Xiang Zhang,et al.  Character-level Convolutional Networks for Text Classification , 2015, NIPS.

[80]  Samuel R. Bowman,et al.  Neural Network Acceptability Judgments , 2018, Transactions of the Association for Computational Linguistics.

[81]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[82]  Emmanuel Dupoux,et al.  Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies , 2016, TACL.

[83]  N. Roese Counterfactual thinking. , 1997, Psychological bulletin.

[84]  Motoaki Kawanabe,et al.  How to Explain Individual Classification Decisions , 2009, J. Mach. Learn. Res..

[85]  Samuel R. Bowman,et al.  A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference , 2017, NAACL.

[86]  Yiming Wang,et al.  Purely Sequence-Trained Neural Networks for ASR Based on Lattice-Free MMI , 2016, INTERSPEECH.

[87]  A. Tversky,et al.  The simulation heuristic , 1982 .

[88]  Sebastian Ruder,et al.  Universal Language Model Fine-tuning for Text Classification , 2018, ACL.

[89]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[90]  David Weinberger,et al.  Accountability of AI Under the Law: The Role of Explanation , 2017, ArXiv.

[91]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[92]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[93]  Dumitru Erhan,et al.  The (Un)reliability of saliency methods , 2017, Explainable AI.

[94]  George Kurian,et al.  Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation , 2016, ArXiv.

[95]  Taku Kudo,et al.  SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing , 2018, EMNLP.

[96]  Samuel R. Bowman,et al.  Verb Argument Structure Alternations in Word and Sentence Embeddings , 2018, ArXiv.

[97]  Yiming Yang,et al.  XLNet: Generalized Autoregressive Pretraining for Language Understanding , 2019, NeurIPS.

[98]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[99]  Edouard Grave,et al.  End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures , 2019, ArXiv.

[100]  Sanjeev Khudanpur,et al.  Librispeech: An ASR corpus based on public domain audio books , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[101]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[102]  R. Thomas McCoy,et al.  Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference , 2019, ACL.

[103]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[104]  Tommi S. Jaakkola,et al.  A causal framework for explaining the predictions of black-box sequence-to-sequence models , 2017, EMNLP.

[105]  S. Piantadosi Zipf’s word frequency law in natural language: A critical review and future directions , 2014, Psychonomic Bulletin & Review.

[106]  Francois Fleuret,et al.  Full-Gradient Representation for Neural Network Visualization , 2019, NeurIPS.

[107]  Colin Raffel,et al.  Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer , 2019, J. Mach. Learn. Res..

[108]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[109]  Christopher D. Manning,et al.  A Structural Probe for Finding Syntax in Word Representations , 2019, NAACL.

[110]  David Harbecke,et al.  Considering Likelihood in NLP Classification Explanations with Occlusion and Language Modeling , 2020, ACL.