Distributed source coding for sensor networks

In recent years, sensor research has been undergoing a quiet revolution, promising to have a significant impact throughout society that could quite possibly dwarf previous milestones in the information revolution. Realizing the great promise of sensor networks requires more than a mere advance in individual technologies. It relies on many components working together in an efficient, unattended, comprehensible, and trustworthy manner. One of the enabling technologies in sensor networks is the distributed source coding (DSC), which refers to the compression of the multiple correlated sensor outputs that does not communicate with each other. DSC allows a many-to-one video coding paradigm that effectively swaps encoder-decoder complexity with respect to conventional video coding, thereby representing a fundamental concept shift in video processing. This article has presented an intensive discussion on two DSC techniques, namely Slepian-Wolf coding and Wyner-Ziv coding. The Slepian and Wolf coding have theoretically shown that separate encoding is as efficient as joint coding for lossless compression in channel coding.

[1]  Alexander Vardy,et al.  Universal Bound on the Performance of Lattice Codes , 1999, IEEE Trans. Inf. Theory.

[2]  Kannan Ramchandran,et al.  Turbo and trellis-based constructions for source coding with side information , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[3]  Bernd Girod,et al.  Compression with side information using turbo codes , 2002, Proceedings DCC 2002. Data Compression Conference.

[4]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[5]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[6]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[7]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[8]  Michael R. Frater,et al.  Efficient drift-free signal-to-noise ratio scalability , 2000, IEEE Trans. Circuits Syst. Video Technol..

[9]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[10]  Zixiang Xiong,et al.  Slepian-Wolf coding of multiple M-ary sources using LDPC codes , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[11]  Neri Merhav,et al.  On successive refinement for the Wyner-Ziv problem , 2004, ISIT.

[12]  Sui Tung,et al.  Multiterminal source coding (Ph.D. Thesis abstr.) , 1978, IEEE Trans. Inf. Theory.

[13]  Vivek K. Goyal,et al.  Multiple description coding: compression meets the network , 2001, IEEE Signal Process. Mag..

[14]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[15]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[16]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[17]  Kenneth Rose,et al.  On zero-error source coding with decoder side information , 2003, IEEE Trans. Inf. Theory.

[18]  Zixiang Xiong,et al.  Design of Slepian-Wolf codes by channel code partitioning , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[19]  S. Verdú,et al.  Noiseless Data Compression with Low-Density Parity-Check Codes , 2003, Advances in Network Information Theory.

[20]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[21]  Lang Tong,et al.  Signal Processing in Random Access A cross-layer perspective in an uncharted path , 2004 .

[22]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[23]  Zixiang Xiong,et al.  Code design for lossless multiterminal networks , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[24]  Zixiang Xiong,et al.  Compression of binary sources with side information at the decoder using LDPC codes , 2002, IEEE Communications Letters.

[25]  T. V. Lakshman,et al.  Call admission control in wireless multimedia networks , 2004, IEEE Signal Processing Magazine.

[26]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[27]  N. Sloane,et al.  On the Existence of Similar Sublattices , 1999, Canadian Journal of Mathematics.

[28]  Ying Zhao,et al.  Data compression of correlated non-binary sources using punctured turbo codes , 2002, Proceedings DCC 2002. Data Compression Conference.

[29]  L. Musiejovsky,et al.  Development of amorphous thin film meander trilayers and investigation of GMI effect , 2004, Proceedings of IEEE Sensors, 2004..

[30]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[31]  Muriel Médard,et al.  On some new approaches to practical Slepian-Wolf compression inspired by channel coding , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[32]  Zixiang Xiong,et al.  Nested convolutional/turbo codes for the binary Wyner-Ziv problem , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[33]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[34]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[35]  Shlomo Shamai,et al.  Capacity of channels with uncoded side information , 1995, Eur. Trans. Telecommun..

[36]  Mihaela van der Schaar,et al.  The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP , 2001, IEEE Trans. Multim..

[37]  William Equitz,et al.  Successive refinement of information , 1991, IEEE Trans. Inf. Theory.

[38]  N. J. A. Sloane,et al.  A lower bound on the average error of vector quantizers , 1985, IEEE Trans. Inf. Theory.

[39]  Kannan Ramchandran,et al.  Duality between source coding and channel coding and its extension to the side information case , 2003, IEEE Trans. Inf. Theory.

[40]  Kannan Ramchandran,et al.  A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[41]  Randall A. Berry,et al.  Cross Layer Wireless Resource Allocation: Fundamental Performance Limits , 2004 .

[42]  Lang Tong,et al.  Signal processing in random access , 2004, IEEE Signal Processing Magazine.

[43]  Michael Gastpar,et al.  The distributed, partial, and conditional Karhunen-Loeve transforms , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[44]  K. Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[45]  Zixiang Xiong,et al.  Iterative decoding of differentially space-time coded multiple descriptions of images , 2004, IEEE Signal Processing Letters.

[46]  Kannan Ramchandran,et al.  On functional duality in MIMO source and channel coding problems having one-sided collaboration , 2002, Proceedings of the IEEE Information Theory Workshop.

[47]  Michael W. Marcellin,et al.  Trellis coded quantization of memoryless and Gauss-Markov sources , 1990, IEEE Trans. Commun..

[48]  R.A. Berry,et al.  Cross-layer wireless resource allocation , 2004, IEEE Signal Processing Magazine.

[49]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[50]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[51]  Rui Zhang,et al.  Design of optimal quantizers for distributed source coding , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[52]  Sergio D. Servetto,et al.  Lattice quantization with side information , 2000, Proceedings DCC 2000. Data Compression Conference.

[53]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[54]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[55]  S. Shamai,et al.  Lossless data compression with error correcting codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[56]  Kannan Ramchandran,et al.  Distributed compression in a dense microsensor network , 2002, IEEE Signal Process. Mag..

[57]  Teofilo C. Ancheta Syndrome-source-coding and its universal generalization , 1976, IEEE Trans. Inf. Theory.

[58]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[59]  Gregory W. Wornell,et al.  The duality between information embedding and source coding with side information and some applications , 2003, IEEE Trans. Inf. Theory.

[60]  Aaron D. Wyner,et al.  Recent results in the Shannon theory , 1974, IEEE Trans. Inf. Theory.

[61]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[62]  Ying Zhao,et al.  Compression of correlated binary sources using turbo codes , 2001, IEEE Communications Letters.

[63]  Zixiang Xiong,et al.  Nested quantization and Slepian-Wolf coding: a Wyner-Ziv coding paradigm for i.i.d. sources , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[64]  Zixiang Xiong,et al.  Slepian-Wolf Coding of Three Binary Sources Using LDPC Codes , 2003 .

[65]  Zixiang Xiong,et al.  Slepian-Wolf coded nested quantization (SWC-NQ) for Wyner-Ziv coding: performance analysis and code design , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[66]  R. A. McDonald,et al.  Noiseless Coding of Correlated Information Sources , 1973 .

[67]  Zixiang Xiong,et al.  Distributed compression of binary sources using conventional parallel and serial concatenated convolutional codes , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[68]  Kannan Ramchandran,et al.  Distributed source coding: symmetric rates and applications to sensor networks , 2000, Proceedings DCC 2000. Data Compression Conference.

[69]  Zixiang Xiong,et al.  Asymmetric code design for remote multiterminal source coding , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[70]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[71]  Brendan J. Frey,et al.  Introduction to the special issue on codes on graphs and iterative algorithms , 2001, IEEE Trans. Inf. Theory.

[72]  Bernd Girod,et al.  Distributed Video Coding , 2005, Proceedings of the IEEE.

[73]  Thomas M. Cover,et al.  A Proof of the Data Compression Theorem of Slepian and Wolf for Ergodic Sources , 1971 .

[74]  B. Girod,et al.  Transforms for high-rate distributed source coding , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[75]  Ying Zhao,et al.  Compression of binary memoryless sources using punctured turbo codes , 2002, IEEE Communications Letters.

[76]  Zixiang Xiong,et al.  Layered Wyner-Ziv video coding , 2004, IS&T/SPIE Electronic Imaging.

[77]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[78]  S. Shamai,et al.  Nested linear/lattice codes for Wyner-Ziv encoding , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[79]  G. David Forney,et al.  Lattice and trellis quantization with lattice- and trellis-bounded codebooks - High-rate theory for memoryless sources , 1993, IEEE Trans. Inf. Theory.

[80]  Giuseppe Longo,et al.  The information theory approach to communications , 1977 .

[81]  J. Bajcsy,et al.  Coding for the Wyner-Ziv problem with turbo-like codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[82]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[83]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[84]  Narendra Ahuja,et al.  Wyner-Ziv coding of video: an error-resilient compression framework , 2004, IEEE Transactions on Multimedia.

[85]  E Weiss,et al.  COMPRESSION AND CODING , 1962 .

[86]  G.R. Arce,et al.  Signal processing challenges in active queue management , 2004, IEEE Signal Processing Magazine.

[87]  Shlomo Shamai,et al.  Systematic Lossy Source/Channel Coding , 1998, IEEE Trans. Inf. Theory.

[88]  Patrick Mitran,et al.  Coding for the Slepian-Wolf problem with turbo codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[89]  J. Wolfowitz The rate distortion function for source coding with side information at the decoder. II , 1979 .

[90]  Kannan Ramchandran,et al.  Distributed code constructions for the entire Slepian-Wolf rate region for arbitrarily correlated sources , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[91]  K. Ramchandran,et al.  n-channel symmetric multiple descriptions: new rate regions , 2002, Proceedings IEEE International Symposium on Information Theory,.

[92]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[93]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[94]  Zixiang Xiong,et al.  Successive refinement for the Wyner-Ziv problem and layered code design , 2005, IEEE Trans. Signal Process..

[95]  Michael T. Orchard,et al.  Design of trellis codes for source coding with side information at the decoder , 2001, Proceedings DCC 2001. Data Compression Conference.

[96]  Wei Zhong,et al.  LDPC codes for compression of multi-terminal sources with hidden Markov correlation , 2003, IEEE Communications Letters.

[97]  Kannan Ramchandran,et al.  PRISM: a "reversed" multimedia coding paradigm , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[98]  Kenneth Rose,et al.  On zero-error coding of correlated sources , 2003, IEEE Trans. Inf. Theory.

[99]  Hirosuke Yamamoto,et al.  A coding theorem for lossy data compression by LDPC codes , 2003, IEEE Trans. Inf. Theory.