APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY
暂无分享,去创建一个
[1] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[2] Mark Meyer,et al. Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.
[3] P. C. Paris,et al. The Stress Analysis of Cracks Handbook, Third Edition , 2000 .
[4] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[5] Brian Moran,et al. Crack tip and associated domain integrals from momentum and energy balance , 1987 .
[6] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] B. Moran,et al. Natural neighbour Galerkin methods , 2001 .
[8] Alireza Tabarraei,et al. Adaptive computations on conforming quadtree meshes , 2005 .
[9] Shuodao Wang,et al. A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .
[10] Elisabeth Anna Malsch,et al. Interpolations for temperature distributions: a method for all non-concave polygons , 2004 .
[11] Hiroshi Tada,et al. The stress analysis of cracks handbook , 2000 .
[12] Norman H. Christ,et al. Weights of links and plaquettes in a random lattice , 1982 .
[13] B.,et al. Natural Neighbor Galerkin Methods , 2001 .
[14] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[15] J. Z. Zhu,et al. The finite element method , 1977 .
[16] Gautam Dasgupta,et al. Interpolants within Convex Polygons: Wachspress' Shape Functions , 2003 .
[17] T. Belytschko,et al. THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .