A Multiscale Material Testing System for In Situ Optical and Electron Microscopes and Its Application

We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical properties of materials with characteristic lengths ranging from millimeters to tens of nanometers, while load capacity can vary from several hundred micronewtons to several nanonewtons. The m-MTM is integrated using piezoelectric motors and piezoelectric stacks/tubes to form coarse and fine testing modules, with specimen length from millimeters to several micrometers, and displacement distances of 12 mm with 0.2 µm resolution for coarse level and 8 µm with 1 nm resolution for fine level. The n-MTM is fabricated using microelectromechanical system technology to form active and passive components and realizes material testing for specimen lengths ranging from several hundred micrometers to tens of nanometers. The system’s capabilities are demonstrated by in-situ OM and SEM testing of the system’s performance and mechanical properties measurements of carbon fibers and metallic microwires. In-situ multiscale deformation tests of Bacillus subtilis filaments are also presented.

[1]  Amit V. Desai,et al.  Mechanical properties of ZnO nanowires , 2007 .

[2]  Oliver Paul,et al.  Mechanical properties of thin films from the load deflection of long clamped plates , 1998 .

[3]  Zhao Zhang,et al.  A novel technique of microforce sensing and loading , 2009 .

[4]  H. Kahn,et al.  Novel method for mechanical characterization of polymeric nanofibers. , 2007, The Review of scientific instruments.

[5]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[6]  R. Powers,et al.  Metrology Challenges for 45 nm Strained‐Si Devices , 2005 .

[7]  Y. Isono,et al.  Mechanical Characteristics of FIB Deposited Carbon Nanowires Using an Electrostatic Actuated Nano Tensile Testing Device , 2007, Journal of Microelectromechanical Systems.

[8]  Q. Zheng,et al.  Tunable resonant frequencies for determining Young's moduli of nanowires , 2009 .

[9]  Kazushi Yamanaka,et al.  Ultrasonic Atomic Force Microscope with Overtone Excitation of Cantilever , 1996 .

[10]  Xide Li,et al.  In situ and real-time tensile testing of thin films using double-field-of-view electronic speckle pattern interferometry , 2004 .

[11]  M. A. Haque,et al.  In-situ tensile testing of nano-scale specimens in SEM and TEM , 2002 .

[12]  Reymond Clavel,et al.  In situ tensile testing of individual Co nanowires inside a scanning electron microscope , 2009, Nanotechnology.

[13]  Horacio Dante Espinosa,et al.  The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics , 2009 .

[14]  P. Jin,et al.  Correction of image drift and distortion in a scanning electron microscopy , 2015, Journal of microscopy.

[15]  Sheng Wang,et al.  Self-retracting motion of graphite microflakes. , 2007, Physical review letters.

[16]  Jack W. Judy,et al.  Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[17]  Xide Li,et al.  Full field and microregion deformation measurement of thin films using electronic speckle pattern interferometry and array microindentation marker method , 2005 .

[18]  Frans Spaepen,et al.  Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers , 2000 .

[19]  Xide Li,et al.  Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis , 2017, Scientific Reports.

[20]  Michael S. Baker,et al.  Demonstration of an in situ on-chip tensile tester , 2009 .

[21]  Hyman Joseph Levinstein,et al.  Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates , 1978 .

[22]  Xide Li,et al.  Alternating-current induced thermal fatigue of gold interconnects with nanometer-scale thickness and width. , 2011, The Review of scientific instruments.

[23]  A. Minor,et al.  Dislocation starvation and exhaustion hardening in Mo alloy nanofibers , 2012 .

[24]  J. Michler,et al.  Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. , 2013, The Review of scientific instruments.

[25]  Ioannis Chasiotis,et al.  Mechanical properties of thin polysilicon films by means of probe microscopy , 1998, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[26]  N. Mendelson,et al.  Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Eleftherios E. Gdoutos,et al.  Elasticity size effects in ZnO nanowires--a combined experimental-computational approach. , 2008, Nano letters.

[28]  J. Dutcher,et al.  In Situ Characterization of Differences in the Viscoelastic Response of Individual Gram-Negative and Gram-Positive Bacterial Cells , 2009, Journal of bacteriology.

[29]  Julia R. Greer,et al.  Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect , 2011 .

[30]  Quanshui Zheng,et al.  Measurement of the cleavage energy of graphite , 2015, Nature Communications.

[31]  Chwee Teck Lim,et al.  Tensile test of a single nanofiber using an atomic force microscope tip , 2005 .

[32]  Oliver Kraft,et al.  Mechanical Testing of Thin Films and Small Structures , 2001 .

[33]  B. Bhushan,et al.  Development of AFM-based techniques to measure mechanical properties of nanoscale structures , 2002 .

[34]  Manuel Elices,et al.  Mechanical properties of silkworm silk in liquid media , 2000 .

[35]  J. Schweitz,et al.  Micromechanical fracture strength of silicon , 1990 .

[36]  H. Espinosa,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Thermal Actuator for Nanoscale in Situ Microscopy Testing: Design and Characterization , 2022 .

[37]  M. A. Haque,et al.  Microscale materials testing using MEMS actuators , 2001 .

[38]  T. O'sullivan,et al.  Mechanical Properties of Thin Films , 1990 .

[39]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[40]  Andrew M Minor,et al.  Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. , 2008, Nature materials.

[41]  A. Rydberg,et al.  Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system , 2006 .

[42]  D. Dikin,et al.  Realization of nanoscale resolution with a micromachined thermally actuated testing stage , 2004 .

[43]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Timothy P. Weihs,et al.  Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films , 1988 .

[45]  Horacio Dante Espinosa,et al.  A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures , 2005 .

[46]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[47]  A. Desai,et al.  Design and modeling of a MEMS pico-Newton loading/sensing device , 2006 .

[48]  N. C. MacDonald,et al.  MICROINSTRUMENTS FOR SUBMICRON MATERIAL STUDIES , 1998 .

[49]  Jun Lou,et al.  A Multi-step Method for In Situ Mechanical Characterization of 1-D Nanostructures Using a Novel Micromechanical Device , 2010 .

[50]  R. L. Edwards,et al.  A new technique for measuring the mechanical properties of thin films , 1997 .

[51]  M. A. Haque,et al.  Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM , 2002 .

[52]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[53]  M. Saif,et al.  A novel SiC MEMS apparatus for in situ uniaxial testing of micro/nanomaterials at high temperature , 2011 .

[54]  H. Espinosa,et al.  Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization , 2007, Journal of Microelectromechanical Systems.

[55]  W. Sharpe,et al.  Mechanical testing of polysilicon thin films with the ISDG , 1997 .

[56]  Ji Won Suk,et al.  Microsystem for nanofiber electromechanical measurements , 2009 .

[57]  Xiaoping Wu,et al.  A brief review and prospect of experimental solid mechanics in China , 2010 .

[58]  K. Suzuki,et al.  Measurements of mechanical properties of microfabricated thin films , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[59]  V. T. Srikar,et al.  A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems , 2003 .

[60]  Aaron Cordes,et al.  Gaps analysis for CD metrology beyond the 22nm node , 2013, Advanced Lithography.

[61]  T. Tsuchiya,et al.  Specimen size effect on tensile strength of surface micromachined polycrystalline silicon thin films , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[62]  C. Zhi,et al.  Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids , 2012 .

[63]  Taihua Zhang,et al.  A moving-coil designed micro-mechanics tester with application on MEMS , 2007 .

[64]  O. Tabata,et al.  Mechanical property measurements of thin films using load-deflection of composite rectangular membranes , 1989 .

[65]  S. M. Hu,et al.  Critical stress in silicon brittle fracture, and effect of ion implantation and other surface treatments , 1982 .

[66]  Conyers Herring,et al.  Elastic and Plastic Properties of Very Small Metal Specimens , 1952 .

[67]  R. Howe,et al.  Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films , 1987 .

[68]  K. Jackson,et al.  Tensile testing of MEMS materials—recent progress , 2003 .

[69]  Richard E. Thompson,et al.  Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing , 2006 .

[70]  J. Dutcher,et al.  Viscoelasticity of the bacterial cell envelope , 2011 .

[71]  J. Maibach,et al.  A new analytical solution for the load-deflection of square membranes , 1995 .

[72]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[73]  R. L. Edwards,et al.  Tensile testing of polysilicon , 1999 .

[74]  Petersen,et al.  Piezo-Actuated Microtensile Test Apparatus , 1998 .

[75]  Hua Guo,et al.  Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO₂ nanowires. , 2011, Nano letters.

[76]  C. Motz,et al.  Yield stress influenced by the ratio of wire diameter to grain size – a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires , 2012 .

[77]  Joost J. Vlassak,et al.  A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films , 1992 .

[78]  Tong-Yi Zhang,et al.  Microbridge testing of silicon nitride thin films deposited on silicon wafers , 2000 .

[79]  Qing Hua Qin,et al.  The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy , 2013 .

[80]  Xide Li,et al.  Investigation of loading and force sensing properties of a probe-type microforce sensor with force-distance curves , 2011 .

[81]  Yu Sun,et al.  MEMS capacitive force sensors for cellular and flight biomechanics , 2007, Biomedical materials.

[82]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .