Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus.

Transition metal dichalcogenides monolayers and black phosphorus thin crystals are emerging two-dimensional materials that demonstrated extraordinary optoelectronic properties. Exotic properties and physics may arise when atomic layers of different materials are stacked together to form van der Waals solids. Understanding the important interlayer couplings in such heterostructures could provide avenues for control and creation of characteristics in these artificial stacks. Here we systematically investigate the optical and optoelectronic properties of artificial stacks of molybdenum disulfide, tungsten disulfide, and black phosphorus atomic layers. An anomalous photoluminescence quenching was observed in tungsten disulfide-molybdenum disulfide stacks. This was attributed to a direct to indirect band gap transition of tungsten disulfide in such stacks while molybdenum disulfide maintains its monolayer properties by first-principles calculations. On the other hand, due to the strong build-in electric fields in tungsten disulfide-black phosphorus or molybdenum disulfide-black phosphorus stacks, the excitons can be efficiently splitted despite both the component layers having a direct band gap in these stacks. We further examine optoelectronic properties of tungsten disulfide-molybdenum disulfide artificial stacks and demonstrate their great potentials in future optoelectronic applications.

[1]  Yanlong Wang,et al.  Chemically driven tunable light emission of charged and neutral excitons in monolayer WS₂. , 2014, ACS nano.

[2]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[3]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[4]  Timothy C. Berkelbach,et al.  Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.

[5]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[6]  P. Ajayan,et al.  Nanomechanical cleavage of molybdenum disulphide atomic layers , 2014, Nature Communications.

[7]  Z. Gong,et al.  Anomalously robust valley polarization and valley coherence in bilayer WS2 , 2014, Proceedings of the National Academy of Sciences.

[8]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[9]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[10]  P. Ajayan,et al.  Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. , 2014, Nano letters.

[11]  Sefaattin Tongay,et al.  Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling , 2014, Nature Communications.

[12]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[13]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[14]  P. Ajayan,et al.  Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. , 2014, ACS nano.

[15]  J. Idrobo,et al.  Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges , 2014, Science.

[16]  Carl W. Magnuson,et al.  The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper , 2013, Science.

[17]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[18]  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.

[19]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[20]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[21]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[22]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[23]  Lai-Peng Ma,et al.  Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. , 2013, ACS nano.

[24]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[25]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[26]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[27]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[28]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[29]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[30]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[31]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[32]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[33]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[34]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[35]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[36]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[37]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[38]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[39]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[40]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[41]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[42]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[43]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[44]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[45]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.