Beyond Besov Spaces Part 1: Distributions of Wavelet Coefficients

AbstractWe determine which information can be extracted from the distributions of the wavelet coefficients of a function f at each scale, but does not depend on the particular wavelet basis which is chosen. This information can be naturally expressed in terms of one increasing function νf (α), and the knowledge of this function yields strictly more information than the knowledge of the Besov spaces that contain f . Examples of use of this additional information will be taken from image processing and multifractal analysis.

[1]  S. Jaffard Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .

[2]  J. Aubry,et al.  Random Wavelet Series , 2002 .

[3]  I. Johnstone,et al.  Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.

[4]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[5]  H. Triebel Theory Of Function Spaces , 1983 .

[6]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[7]  Y. Meyer,et al.  Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .

[8]  Yves Meyer,et al.  Wavelets, Vibrations and Scalings , 1997 .

[9]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[10]  Jensen,et al.  Direct determination of the f( alpha ) singularity spectrum and its application to fully developed turbulence. , 1989, Physical review. A, General physics.

[11]  Jacques Lévy Véhel,et al.  Continuous Large Deviation Multifractal Spectrum: Definition and Estimation , 1998 .

[12]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[14]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[15]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[16]  B. Vidakovic,et al.  Bayesian Inference in Wavelet-Based Models , 1999 .

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  A. Cohen,et al.  Wavelets and Multiscale Signal Processing , 1995 .

[19]  J. Peinke,et al.  Multiplicative process in turbulent velocity statistics : A simplified analysis , 1996 .

[20]  R. Jensen,et al.  Direct determination of the f(α) singularity spectrum , 1989 .

[21]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[22]  Emmanuel Bacry,et al.  Random cascades on wavelet dyadic trees , 1998 .

[23]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[24]  Stéphane Jaffard,et al.  Beyond Besov Spaces, Part 2: Oscillation Spaces , 2003 .

[25]  S. Mallat A wavelet tour of signal processing , 1998 .