The medial habenula: still neglected

The habenula is a small, bilateral brain structure located at the dorsal end of the diencephalon. This structure sends projections to the dopaminergic striatum and receives inputs from the limbic forebrain, making the habenula a unique modulator of cross-talk between these brain regions. Despite strong interest in the habenula during the seventies and eighties (Herkenham and Nauta, 1977; Beckstead, 1979; Beckstead et al., 1979; Herkenham and Nauta, 1979; Caldecott-Hazard et al., 1988), interest waned due to lack of a clearly identifiable functional role. Following Matsumoto and Hikosaka's seminal work on the lateral habenula as a predictor of negative reward in monkeys, the habenula has undergone a resurgence of scientific interest. Matsumoto and Hikosaka demonstrated an increase in habenular neuron firing when monkeys did not receive an expected juice reward (Matsumoto and Hikosaka, 2007). Studies have shown that increased habenular activity inactivates dopaminergic cells in the Rostromedial Tegmental Nucleus (RMTg) through GABAergic mechanisms (Jhou et al., 2009a,b). Additional studies link habenular activity to the regulation of serotonin and norepinephrine, suggesting the habenula modulates multiple brain systems (Strecker and Rosengren, 1989; Amat et al., 2001). These discoveries ushered in a series of new studies that have refocused attention on the lateral habenula and the importance of this small brain structure (Bianco and Wilson, 2009; Jhou et al., 2009a; Matsumoto and Hikosaka, 2009; Sartorius et al., 2010; Savitz et al., 2011). Recently, Geisler and Trimble reviewed this renewed interest in: The Lateral Habenula: No Longer Neglected (Geisler and Trimble, 2008). While the lateral habenula (LHb) has been extensively studied, the anatomically and histochemically distinct medial habenula (MHb) remains largely understudied. This short review argues that the MHb is functionally important and should be studied more aggressively.

[1]  W. Nauta,et al.  Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat , 1986, The Journal of comparative neurology.

[2]  D. Amaral,et al.  Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys , 2004, The Journal of comparative neurology.

[3]  F. Fonnum,et al.  Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: Surgical and kainic acid lesions , 1983, Brain Research.

[4]  A. C. Collins,et al.  Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization , 2004, Science.

[5]  A. Beaudet,et al.  Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Jhou,et al.  The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta , 2009, The Journal of comparative neurology.

[7]  W. Nauta,et al.  Efferent connections of the substantia nigra and ventral tegmental area in the rat , 1979, Brain Research.

[8]  C. Qin,et al.  Neurochemical Phenotypes of the Afferent and Efferent Projections of the Mouse Medial Habenula Article in Press , 2022 .

[9]  U. Maskos,et al.  Aversion to Nicotine Is Regulated by the Balanced Activity of β4 and α5 Nicotinic Receptor Subunits in the Medial Habenula , 2011, Neuron.

[10]  Peter Kirsch,et al.  Remission of Major Depression Under Deep Brain Stimulation of the Lateral Habenula in a Therapy-Refractory Patient , 2010, Biological Psychiatry.

[11]  D. A. Brown,et al.  Chemical transmission in the rat interpeduncular nucleus in vitro. , 1983, The Journal of physiology.

[12]  F. Fonnum,et al.  Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach , 1987, Neuroscience.

[13]  P. Kelly Defective inhibition of dream event memory formation: a hypothesized mechanism in the onset and progression of symptoms of schizophrenia , 1998, Brain Research Bulletin.

[14]  Ajay S. Mathuru,et al.  The medial habenula as a regulator of anxiety in adult zebrafish , 2013, Front. Neural Circuits.

[15]  J. Boulter,et al.  Nicotinic Receptors in the Habenulo-Interpeduncular System Are Necessary for Nicotine Withdrawal in Mice , 2009, The Journal of Neuroscience.

[16]  D. Overstreet,et al.  Attenuation of alcohol intake by Ibogaine in three strains of alcohol-preferring rats , 1995, Pharmacology Biochemistry and Behavior.

[17]  M. Trimble,et al.  The Lateral Habenula: No Longer Neglected , 2008, CNS Spectrums.

[18]  J. Roiser,et al.  Habenula Volume in Bipolar Disorder and Major Depressive Disorder: A High-Resolution Magnetic Resonance Imaging Study , 2011, Biological Psychiatry.

[19]  G. Ellison,et al.  Nicotine produces selective degeneration in the medial habenula and fasciculus retroflexus , 2001, Brain Research.

[20]  Su-Youne Chang,et al.  Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus , 2005, The Journal of comparative neurology.

[21]  Minmin Luo,et al.  Habenula “Cholinergic” Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes , 2011, Neuron.

[22]  Y. Sano,et al.  Genetic dissection of medial habenula–interpeduncular nucleus pathway function in mice , 2013, Front. Behav. Neurosci..

[23]  F. Gonzalez-Lima,et al.  Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior , 2003, Brain Research.

[24]  R. Salas,et al.  Influence of Neuronal Nicotinic Receptors over Nicotine Addiction and Withdrawal , 2008, Experimental biology and medicine.

[25]  C. Pycock,et al.  Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula , 2004, Experimental Brain Research.

[26]  J. Mazziotta,et al.  Cerebral correlates of depressed behavior in rats, visualized using 14C- 2-deoxyglucose autoradiography , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  H. Okamoto,et al.  Molecular characterization of the subnuclei in rat habenula , 2012, The Journal of comparative neurology.

[28]  G. Ellison,et al.  Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry , 2002, European Neuropsychopharmacology.

[29]  Mark G. Baxter,et al.  The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses , 2009, Neuron.

[30]  M. Kasten,et al.  α3β4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons , 1999, Neuropharmacology.

[31]  C. D. Fowler,et al.  Habenular α5* nicotinic receptor signaling controls nicotine intake , 2011, Nature.

[32]  Cathleen Teh,et al.  The Habenula Prevents Helpless Behavior in Larval Zebrafish , 2010, Current Biology.

[33]  S. Cappendijk,et al.  Inhibitory effects of ibogaine on cocaine self-administration in rats. , 1993, European journal of pharmacology.

[34]  R. Strecker,et al.  Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis: role of excitatory amino acids and GABA , 1989, Brain Research.

[35]  B. Borowsky,et al.  An in situ hybridization study of the distribution of the GABA(B2) protein mRNA in the rat CNS. , 1999, Brain research. Molecular brain research.

[36]  J. Changeux,et al.  Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors , 2005, Nature.

[37]  R. Salas,et al.  Decreased Signs of Nicotine Withdrawal in Mice Null for the β4 Nicotinic Acetylcholine Receptor Subunit , 2004, The Journal of Neuroscience.

[38]  A. C. Collins,et al.  The β3 Nicotinic Receptor Subunit: A Component of α-Conotoxin MII-Binding Nicotinic Acetylcholine Receptors that Modulate Dopamine Release and Related Behaviors , 2003, The Journal of Neuroscience.

[39]  G. Nilsson,et al.  Substance p: localization in the central nervous system and in some primary sensory neurons , 1975, Science.

[40]  R. Turner,et al.  Mapping of the internal structure of human habenula with ex vivo MRI at 7T , 2013, Front. Hum. Neurosci..

[41]  S. Sesack,et al.  The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus , 2011, The Journal of comparative neurology.

[42]  Y. Goto,et al.  Neurodevelopmental Disruption of Cortico-Striatal Function Caused by Degeneration of Habenula Neurons , 2011, PloS one.

[43]  J. A. Dani,et al.  Altered Anxiety-Related Responses in Mutant Mice Lacking the β4 Subunit of the Nicotinic Receptor , 2003, The Journal of Neuroscience.

[44]  M. Pangalos,et al.  Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion , 2001, Neuroscience.

[45]  R. Turner,et al.  High‐resolution MRI and diffusion‐weighted imaging of the human habenula at 7 tesla , 2014, Journal of magnetic resonance imaging : JMRI.

[46]  Takashi Yamaguchi,et al.  Distinct Roles of Segregated Transmission of the Septo-Habenular Pathway in Anxiety and Fear , 2013, Neuron.

[47]  O. Rønnekleiv,et al.  Brain-pineal nervous connections in the rat: An ultrastructure study following habenular lesion , 1979, Experimental Brain Research.

[48]  J. Changeux,et al.  Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine , 1998, Nature.

[49]  S. D. Glick,et al.  18-Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in rats. , 2006, European journal of pharmacology.

[50]  M. Picciotto,et al.  Neuronal Systems Underlying Behaviors Related to Nicotine Addiction: Neural Circuits and Molecular Genetics , 2002, The Journal of Neuroscience.

[51]  W. Nauta,et al.  Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber‐of‐passage problem , 1977, The Journal of comparative neurology.

[52]  S. D. Glick,et al.  α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo , 2012, Neuropharmacology.

[53]  S. Higashijima,et al.  The habenula is crucial for experience-dependent modification of fear responses in zebrafish , 2010, Nature Neuroscience.

[54]  R. Shigemoto,et al.  Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain , 1999 .

[55]  T. Jessell,et al.  Substance P containing and cholinergic projections from the habenula , 1978, Brain Research.

[56]  R. Dantzer,et al.  From inflammation to sickness and depression: when the immune system subjugates the brain , 2008, Nature Reviews Neuroscience.

[57]  T. Xu,et al.  Absence of GABA type A signaling in adult medial habenular neurons , 2006, Neuroscience.

[58]  P. Read Montague,et al.  Human Neuroscience , 2022 .

[59]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[60]  K. Andres,et al.  Subnuclear organization of the rat habenular complexes , 1999, The Journal of comparative neurology.

[61]  Z. Gottesfeld Origin and distribution of noradrenergic innervation in the habenula: A neurochemical study , 1983, Brain Research.

[62]  T. Joh,et al.  Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS , 2002, Brain Research.

[63]  R. Lester,et al.  Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons , 2000, Neuropharmacology.

[64]  D. V. von Cramon,et al.  Error Monitoring Using External Feedback: Specific Roles of the Habenular Complex, the Reward System, and the Cingulate Motor Area Revealed by Functional Magnetic Resonance Imaging , 2003, The Journal of Neuroscience.

[65]  T. Svensson,et al.  Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. , 1994, Pharmacology & toxicology.

[66]  R. Paylor,et al.  Absence of alpha7-containing neuronal nicotinic acetylcholine receptors does not prevent nicotine-induced seizures. , 2002, Brain research. Molecular brain research.

[67]  R. Sandyk,et al.  Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. , 1991, The International journal of neuroscience.

[68]  R. Shigemoto,et al.  Spatial distribution of GABA(B)R1 receptor mRNA and binding sites in the rat brain. , 1999, The Journal of comparative neurology.

[69]  S. D. Glick,et al.  18‐MC acts in the medial habenula and interpeduncular nucleus to attenuate dopamine sensitization to morphine in the nucleus accumbens , 2007, Synapse.

[70]  T. Freund,et al.  The triangular septal nucleus as the major source of ATP release in the rat habenula: A combined neurochemical and morphological study , 1998, Neuroscience.

[71]  Arthur L. Beaudet,et al.  Multiorgan Autonomic Dysfunction in Mice Lacking the β2 and the β4 Subunits of Neuronal Nicotinic Acetylcholine Receptors , 1999, The Journal of Neuroscience.

[72]  R. M. Beckstead An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal‐projection (prefrontal) cortex in the rat , 1979, The Journal of comparative neurology.

[73]  S. Maier,et al.  The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress , 2001, Brain Research.

[74]  G. Giovanni,et al.  Nicotinic Receptors , 2014, The Receptors.

[75]  D. McCormick,et al.  Actions of acetylcholine in the guinea‐pig and cat medial and lateral geniculate nuclei, in vitro. , 1987, The Journal of physiology.

[76]  P. Kelly,et al.  Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia , 2004, The European journal of neuroscience.

[77]  L. Role,et al.  Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. , 1995, Science.

[78]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[79]  P. Kelly,et al.  A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition , 2007, Neuroscience & Biobehavioral Reviews.

[80]  J. Carlson,et al.  Effects and aftereffects of ibogaine on morphine self-administration in rats. , 1991, European journal of pharmacology.

[81]  G. Ellison Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula , 1994, Brain Research Reviews.

[82]  Christophe D. Proulx,et al.  Synaptic potentiation onto habenula neurons in learned helplessness model of depression , 2010, Nature.

[83]  J. Krueger,et al.  Interleukin-18 promotes sleep in rabbits and rats. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[84]  M. Biasi,et al.  The α3 and β4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice , 2004, Neuropharmacology.

[85]  K. Andres,et al.  Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat , 2003, The Journal of comparative neurology.

[86]  A. Beaudet,et al.  Mice lacking neuronal nicotinic acetylcholine receptor β4-subunit and mice lacking both α5- and β4-subunits are highly resistant to nicotine-induced seizures , 2004 .

[87]  Stephen W. Wilson,et al.  The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[88]  Qun Lu,et al.  Habenular a5 nicotinic receptor subunit signalling controls nicotine intake , 2011 .

[89]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[90]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[91]  P. Stahel,et al.  IL-18: a key player in neuroinflammation and neurodegeneration? , 2005, Trends in Neurosciences.