The Mordell-Lang conjecture for function fields

We give a proof of the geometric Mordell-Lang conjecture, in any characteristic. Our method involves a model-theoretic analysis of the kernel of Manin’s homomorphism and of a certain analog in characteristic p. Department of Mathematics, Massachusetts Institute of Technology, 2-277, Cambridge, Massachusetts 02139 Current address: Department of Mathematics, Hebrew University, Jerusalem, Israel E-mail address: ehud@math.mit.edu

[1]  Anand Pillay,et al.  The Model theory of groups , 1989 .

[2]  Integral points of abelian varieties over function fields of characteristic zero , 1993 .

[3]  Ehud Hrushovski,et al.  Zariski Geometries , 1993 .

[4]  Dan Abramovich,et al.  Toward a proof of the Mordell-Lang conjecture in characteristic p , 1992 .

[5]  M. Messmer Groups and fields interpretable in separably closed fields , 1994 .

[6]  Yu. I. Manin,et al.  Rational points on algebraic curves over function elds , 1996 .

[7]  A. Pillay Model Theory, Stability Theory, and Stable Groups , 1989 .

[8]  Daniel Lascar,et al.  Ranks and definability in superstable theories , 1976 .

[9]  Anand Pillay,et al.  Weakly normal groups , 1985, Logic Colloquium.

[10]  Françoise Delon,et al.  Idéaux et types sur les corps séparablement clos , 1988 .

[11]  Alexandru Buium,et al.  Intersections in jet spaces and a conjecture of S. Lang , 1992 .

[12]  Carol Wood,et al.  Notes on the stability of separably closed fields , 1979, Journal of Symbolic Logic.

[13]  A. Weil,et al.  Variétés abéliennes et courbes algébriques , 1948 .

[14]  Gerald E. Sacks,et al.  Saturated Model Theory , 1972 .

[15]  S. Lang Division points on curves , 1965 .

[16]  S. Lang Number Theory III , 1991 .

[17]  A. Robinson,et al.  On the finiteness theorem of Siegel and Mahler concerning diophantine equations , 1975 .

[18]  B. M. Fulk MATH , 1992 .

[19]  Lang Serge Number Theory III: Diophantine Geometry , 1991 .