The Mordell-Lang conjecture for function fields
暂无分享,去创建一个
[1] Anand Pillay,et al. The Model theory of groups , 1989 .
[2] Integral points of abelian varieties over function fields of characteristic zero , 1993 .
[3] Ehud Hrushovski,et al. Zariski Geometries , 1993 .
[4] Dan Abramovich,et al. Toward a proof of the Mordell-Lang conjecture in characteristic p , 1992 .
[5] M. Messmer. Groups and fields interpretable in separably closed fields , 1994 .
[6] Yu. I. Manin,et al. Rational points on algebraic curves over function elds , 1996 .
[7] A. Pillay. Model Theory, Stability Theory, and Stable Groups , 1989 .
[8] Daniel Lascar,et al. Ranks and definability in superstable theories , 1976 .
[9] Anand Pillay,et al. Weakly normal groups , 1985, Logic Colloquium.
[10] Françoise Delon,et al. Idéaux et types sur les corps séparablement clos , 1988 .
[11] Alexandru Buium,et al. Intersections in jet spaces and a conjecture of S. Lang , 1992 .
[12] Carol Wood,et al. Notes on the stability of separably closed fields , 1979, Journal of Symbolic Logic.
[13] A. Weil,et al. Variétés abéliennes et courbes algébriques , 1948 .
[14] Gerald E. Sacks,et al. Saturated Model Theory , 1972 .
[15] S. Lang. Division points on curves , 1965 .
[16] S. Lang. Number Theory III , 1991 .
[17] A. Robinson,et al. On the finiteness theorem of Siegel and Mahler concerning diophantine equations , 1975 .
[18] B. M. Fulk. MATH , 1992 .
[19] Lang Serge. Number Theory III: Diophantine Geometry , 1991 .