SMCA: An efficient SOAP messages compression and aggregation technique for improving web services performance

Abstract The Simple Object Access Protocol (SOAP) is an eXtensible Markup Language (XML) based messaging protocol, which is widely used over the Internet. It supports interoperability by creating access between users and their service providers from the same or different platforms. However, the huge number and the large size of exchanged SOAP messages cause congestions and bottlenecks. Existing techniques based on grouping of XML messages have shown some shortcomings in terms of execution time and compression ratio. Therefore, in this paper, we propose a new technique called SMCA for efficiently compressing and aggregating the SOAP messages. Technically, the proposed technique requires only one passage on all the XML messages to perform aggregation and compression processes. Based on the SMCA technique, the XML data of the same paths are regrouped in one container. The experimental results on real XML dataset verify the efficiency and the effectiveness of the proposed technique.

[1]  Charu C. Aggarwal,et al.  Xproj: a framework for projected structural clustering of xml documents , 2007, KDD '07.

[2]  Radha Senthilkumar,et al.  QRFXFreeze: Queryable Compressor for RFX , 2015, TheScientificWorldJournal.

[3]  Wilfred Ng,et al.  XQzip: Querying Compressed XML Using Structural Indexing , 2004, EDBT.

[4]  Zahir Tari,et al.  Fractal self-similarity measurements based clustering technique for SOAP Web messages , 2013, J. Parallel Distributed Comput..

[5]  Raymond K. Wong,et al.  Querying and maintaining a compact XML storage , 2007, WWW '07.

[6]  Arputharaj Kannan,et al.  Designing and Querying a Compact Redundancy Free XML Storage , 2009 .

[7]  Robert Richards Simple API for XML (SAX) , 2006 .

[8]  Shinji Shimojo,et al.  Web-Based Distributed Simulation and Data Management Services for Medical Applications , 2006, 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06).

[9]  Ioana Manolescu,et al.  Xquec: Pushing Queries to Compressed XML Data , 2003, VLDB.

[10]  Mohd Zakree Ahmad Nazri,et al.  Fast dynamic clustering SOAP messages based compression and aggregation model for enhanced performance of Web services , 2014, J. Netw. Comput. Appl..

[11]  J. Swacha,et al.  Fast Transform for Effective XML Compression , 2007, 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics.

[12]  Marcel-Catalin Rosu A-SOAP: Adaptive SOAP Message Processing and Compression , 2007, IEEE International Conference on Web Services (ICWS 2007).

[13]  Tomasz Müldner,et al.  AXECHOP: a grammar-based compressor for XML , 2005, Data Compression Conference.

[14]  Marios D. Dikaiakos,et al.  Cloud Computing: Distributed Internet Computing for IT and Scientific Research , 2009, IEEE Internet Computing.

[15]  Chengfei Liu,et al.  A Framework for Clustering and Dynamic Maintenance of XML Documents , 2017, ADMA.

[16]  David A. Chappell,et al.  Java Web Services , 2002 .

[17]  Rohollah Omidvar,et al.  AN IMPROVED SSPCO OPTIMIZATION ALGORITHM FOR SOLVE OF THE CLUSTERING PROBLEM , 2018 .

[18]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[19]  Jayant R. Haritsa,et al.  XGrind: a query-friendly XML compressor , 2002, Proceedings 18th International Conference on Data Engineering.

[20]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[21]  C. Werner,et al.  Compressing SOAP messages by using differential encoding , 2004 .

[22]  Christopher League,et al.  Schema-Based Compression of XML Data with Relax NG , 2007, J. Comput..

[23]  Daniel Andresen,et al.  LYE: a high-performance caching SOAP implementation , 2004 .

[24]  Sherif Sakr,et al.  XML compression techniques: A survey and comparison , 2009, J. Comput. Syst. Sci..

[25]  Dhiah Al-Shammary,et al.  Redundancy-aware SOAP messages compression and aggregation for enhanced performance , 2012, J. Netw. Comput. Appl..

[26]  Juan Touriño,et al.  A middleware architecture for distributed systems management , 2004, J. Parallel Distributed Comput..

[27]  Min Lei,et al.  A Novel Clustering Algorithm Based on Graph Matching , 2013, J. Softw..

[28]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[29]  M. Neumüller,et al.  Compression of XML Data , 2001 .

[30]  Mark Levene,et al.  XCQ: A queriable XML compression system , 2006, Knowledge and Information Systems.

[31]  Manish Parashar,et al.  Latency Performance of SOAP Implementations , 2002, 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID'02).

[32]  Gonzalo Navarro,et al.  Merging prediction by partial matching with structural contexts model , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[33]  P. Danielsson Euclidean distance mapping , 1980 .

[34]  Richi Nayak,et al.  XML data clustering: An overview , 2011, CSUR.

[35]  A. Kannan,et al.  Query Optimization of RFX Compact Storage using Strategy List , 2008, 2008 16th International Conference on Advanced Computing and Communications.

[36]  Zahir Tari,et al.  A distributed aggregation and fast fractal clustering approach for SOAP traffic , 2014, J. Netw. Comput. Appl..

[37]  Fabrizio Luccio,et al.  Compressing and searching XML data via two zips , 2006, WWW '06.

[38]  Dan Suciu,et al.  XMill: an efficient compressor for XML data , 2000, SIGMOD 2000.

[39]  Elio Masciari,et al.  Fast detection of XML structural similarity , 2005, IEEE Transactions on Knowledge and Data Engineering.