Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator.

We investigate the entanglement generation between two nitrogen-vacancy (NV) centers in diamond nanocrystal coupled to a high-Q counterpropagating twin whispering-gallery modes (WGMs) of a microtoroidal resonator. For looking into the degree and dynamics of the entanglement, we calculate the concurrence using the microscopic master equation approach. The influences of the coupling strength between the WGMs (or the size of the two spherical NV centers), the distance between two NV centers, the frequency detuning between the NV center and microresonator, and the initial state of the system on the dynamics of concurrence are discussed in detail. It is found that the maximum entanglement between the two NV centers can be created by properly adjusting these controllable system parameters. Our results may provide further insight into future solid-state cavity quantum electrodynamics (CQED) system for quantum information engineering.

[1]  C. S. Wood,et al.  Deterministic Entanglement of Two Trapped Ions , 1998 .

[2]  M. Feng,et al.  Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. , 2010, Physical review letters.

[3]  Daniel Ratchford,et al.  Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. , 2011, Nano letters.

[4]  M. Orszag,et al.  Creation of entanglement of two atoms coupled to two distant cavities with losses , 2010 .

[5]  P. Barclay,et al.  Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities , 2011, 1102.5372.

[6]  O. Benson,et al.  Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator , 2009 .

[7]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[8]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[9]  Marshall Stoneham,et al.  Is a room-temperature, solid-state quantum computer mere fantasy? , 2009 .

[10]  A. D. Boozer,et al.  Reversible state transfer between light and a single trapped atom. , 2007, Physical review letters.

[11]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[12]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[13]  M. Czachor,et al.  Theory versus experiment for vacuum Rabi oscillations in lossy cavities , 2008, 0811.3177.

[14]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[15]  Fu-Li Li,et al.  Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers , 2011, 1110.6718.

[16]  P. Barclay,et al.  Hybrid Nanocavity Resonant Enhancement of Color Center Emission in Diamond , 2011, 1105.5137.

[17]  M. Feng,et al.  Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities , 2011 .

[18]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[19]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[20]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[21]  Qiong Chen,et al.  Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators , 2011 .

[22]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[23]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[24]  H. Kimble,et al.  Measurement induced entanglement for excitation stored in remote atomic ensembles , 2006, QELS 2006.

[25]  D. D. Awschalom,et al.  Room-temperature manipulation and decoherence of a single spin in diamond , 2006, quant-ph/0608233.

[26]  Yan Li,et al.  Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator , 2012, 1206.2422.

[27]  X. Peng A Controlled Phase Gate with Nitrogen-Vacancy Centers in Nanocrystal Coupled to a Silica Microsphere Cavity , 2010 .

[28]  D. Weiss,et al.  Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. , 1995, Optics letters.

[29]  Che-Ming Li,et al.  Generating maximum entanglement under asymmetric couplings to surface plasmons. , 2012, Optics letters.

[30]  A. Aspect Bell's inequality test: more ideal than ever , 1999, Nature.

[31]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[32]  He-Shan Song,et al.  Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution , 2010 .

[33]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[34]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[35]  E. Davies,et al.  Markovian master equations , 1974 .

[36]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[37]  Yan Li,et al.  Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering , 2011, 1106.1479.

[38]  J. Piilo,et al.  Microscopic derivation of the Jaynes-Cummings model with cavity losses , 2006, quant-ph/0610140.

[39]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[40]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[41]  T. Di,et al.  Quantum teleportation of an arbitrary superposition of atomic Dicke states (7 pages) , 2004 .

[42]  K. Vahala Optical microcavities , 2003, Nature.

[43]  Takao Aoki,et al.  A Photon Turnstile Dynamically Regulated by One Atom , 2008, Science.

[44]  Zhang-qi Yin,et al.  One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity , 2010, 1006.0278.

[45]  T. Pellizzari,et al.  Quantum Networking with Optical Fibres , 1997 .

[46]  Jason M. Smith,et al.  Prospects for measurement‐based quantum computing with solid state spins , 2009, 0901.3092.

[47]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[48]  Oliver Benson,et al.  One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. , 2008, Nano letters.

[49]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[50]  Franco Nori,et al.  Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement , 2011, 1403.3512.

[51]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[52]  Charles Santori,et al.  D ec 2 00 8 Coherent interference effects in a nano-assembled opticalcavity-QED system , 2008 .

[53]  Yiwen Chu,et al.  Quantum Entanglement Between an Optical Photon and a Solid-State Spin Qubit , 2011 .

[54]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[55]  Miguel Orszag,et al.  Coherence and entanglement in a two-qubit system , 2010 .

[56]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[57]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[58]  Shi-Biao Zheng Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation. , 2005, Physical review letters.

[59]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[60]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[61]  Mats Larsson,et al.  Composite optical microcavity of diamond nanopillar and silica microsphere. , 2009, Nano letters.

[62]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[63]  Yan Li,et al.  Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator , 2011 .

[64]  Jiangfeng Du,et al.  Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity , 2010 .

[65]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[66]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.