Implications of a two-component marble-cake mantle

It is suggested that the upper mantle contains elongated strips of subducted oceanic lithosphere. These strips are stretched and thinned by the normal and shear strains in the convecting mantle, and are destroyed by being reprocessed at ocean ridges or, on the centimetre scale, by dissolution processes; the result is a marble-cake mantle. Simple theoretical calculations, together with isotopic and structural observations made on high-temperature peridotite massifs, lead to a comprehensive marble-cake model which is consistent with most isotopic and mechanical constraints.

[1]  K. Fuchs Recently formed elastic anisotropy and petrological models for the continental subcrustal lithosphere in southern Germany , 1983 .

[2]  J. Ottino,et al.  Laminar mixing of polymeric liquids: a brief review and recent theoretical developments , 1983 .

[3]  M. Loubet,et al.  Trace element studies in the Alpine type peridotite of Beni-Bouchera (Morocco) , 1979 .

[4]  H. Stockman,et al.  The Ronda high temperature peridotite: Geochemistry and petrogenesis , 1985 .

[5]  N. Shimizu,et al.  Rare earth elements in alpine peridotites , 1975 .

[6]  S. H. Richardson,et al.  Alteration of the oceanic crust: Processes and timing , 1981 .

[7]  David A. Yuen,et al.  Mixing of passive heterogeneities by mantle convection , 1984 .

[8]  D. Green The Petrogenesis of the High-temperature Peridotite Intrusion in the Lizard Area, Cornwall , 1964 .

[9]  M. Polvé,et al.  Orogenic lherzolite complexes studied by 87Rb-87Sr: A clue to understand the mantle convection processes? , 1980 .

[10]  Albrecht W. Hofmann,et al.  Mantle plumes from ancient oceanic crust , 1982 .

[11]  F. Richter,et al.  On the importance of advection in determining the local isotopic composition of the mantle , 1979 .

[12]  F. Richter,et al.  A parameterized model for the evolution of isotopic heterogeneities in a convecting system. [for earth mantle] , 1982 .

[13]  Don L. Anderson,et al.  Elastic wave propagation in layered anisotropic media , 1961 .

[14]  M. Gurnis,et al.  Mixing in numerical models of mantle convection incorporating plate kinematics , 1986 .

[15]  A. Nicolas,et al.  Interpretation cinematique des deformations plastiques dans le massif de Lherzolite de lanzo (Alpes piemontaises) — comparaison avec d'autres Massifs , 1972 .

[16]  C. Allègre,et al.  Neodymium and strontium isotope study of ophiolite and orogenic lherzolite petrogenesis , 1980 .

[17]  B. Dupré,et al.  Isotopic and chemical effects produced in a continuously differentiating convecting Earth mantle , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  G. Davies Geophysical and isotopic constraints on mantle convection: An interim synthesis , 1984 .

[19]  C. Allègre,et al.  Trace elements in orogenic lherzolites reveal the complex history of the upper mantle , 1982, Nature.

[20]  B. Hamelin,et al.  PbSrNd isotopic data of Indian Ocean ridges: new evidence of large-scale mapping of mantle heterogeneities , 1986 .

[21]  D. McKenzie,et al.  Mantle reservoirs and ocean island basalts , 1983, Nature.

[22]  F. Frey Rare earth abundances in a high-temperature peridotite intrusion , 1969 .

[23]  B. Dupré,et al.  Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena , 1983, Nature.

[24]  D. Yuen,et al.  Convective mixing and the fine structure of mantle heterogeneity , 1984 .

[25]  S. Hart,et al.  Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data, I. Theoretical methods , 1983 .

[26]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[27]  E. R. Oxburgh,et al.  Heat and helium in the Earth , 1983, Nature.

[28]  A. Hofmann,et al.  An assessment of local and regional isotopic equilibrium in the mantle , 1978 .

[29]  R. Batiza,et al.  Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity , 1984 .

[30]  J. Kornprobst Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): Etude des péridotites de haute température et de haute pression, et des pyroxénolites, à grenat ou sans grenat, qui leur sont associées , 1969 .

[31]  M. Kurz,et al.  Constraints on evolution of Earth's mantle from rare gas systematics , 1983, Nature.

[32]  D. Turcotte Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands: Geophysical Re , 1985 .

[33]  D. L. Anderson,et al.  Generalized two‐dimensional model seismology with application to anisotropic Earth models , 1963 .

[34]  H. S. Yoder Generation of basaltic magma , 1976 .

[35]  S. Goldstein,et al.  Nd and Sr isotopic study of a mafic layer from Ronda ultramafic complex , 1983, Nature.

[36]  N. Hoffman,et al.  The destruction of geochemical heterogeneities by differential fluid motions during mantle convection , 1985 .

[37]  M. Menzies,et al.  Strontium isotope geochemistry of alpine tectonite lherzolites: Data compatible with a mantle origin , 1978 .