C URRENT OPINION Dynamic models of viral replication and latency

Summary Timing is an important component of biological interactions. Temporal analyses covering aspects of viral life cycle are essential for gathering a comprehensive picture of HIV interaction with the host cell and untangling the complexity of latency. Understanding the dynamic changes tipping the balance between success and failure of HIV particle production might be key to eradicate the viral reservoir.

[1]  L. Rong,et al.  Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy. , 2014, Journal of theoretical biology.

[2]  T. Leitner,et al.  Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages , 2014, Retrovirology.

[3]  J. Reece,et al.  Modeling the Timing of Antilatency Drug Administration during HIV Treatment , 2014, Journal of Virology.

[4]  M. Katze,et al.  A proteomic glimpse into the initial global epigenetic changes during HIV infection , 2014, Proteomics.

[5]  R. Siliciano,et al.  Rekindled HIV infection , 2014, Science.

[6]  R. Siliciano,et al.  HIV: Early treatment may not be early enough , 2014, Nature.

[7]  S. Deeks,et al.  Immunologic strategies for HIV-1 remission and eradication , 2014, Science.

[8]  Jinyan Liu,et al.  Rapid Seeding of the Viral Reservoir Prior to SIV Viremia in Rhesus Monkeys , 2014, Nature.

[9]  Jun Wang,et al.  Deep Sequencing of HIV-Infected Cells: Insights into Nascent Transcription and Host-Directed Therapy , 2014, Journal of Virology.

[10]  R. Siliciano,et al.  Measuring reversal of HIV-1 latency ex vivo using cells from infected individuals , 2014, Proceedings of the National Academy of Sciences.

[11]  J. Fellay,et al.  Dynamics of HIV Latency and Reactivation in a Primary CD4+ T Cell Model , 2014, PLoS pathogens.

[12]  Anthony R Cillo,et al.  Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy , 2014, Proceedings of the National Academy of Sciences.

[13]  Robert F. Siliciano,et al.  Novel ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo , 2014, Nature Medicine.

[14]  Feng Fu,et al.  Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1 , 2014, Proceedings of the National Academy of Sciences.

[15]  D. Margolis,et al.  Emerging strategies to deplete the HIV reservoir , 2014, Current opinion in infectious diseases.

[16]  Alan S Perelson,et al.  Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues , 2014, Proceedings of the National Academy of Sciences.

[17]  Christian L. Althaus,et al.  Quantifying the Turnover of Transcriptional Subclasses of HIV-1-Infected Cells , 2013, bioRxiv.

[18]  J. Petravic,et al.  Intracellular Dynamics of HIV Infection , 2013, Journal of Virology.

[19]  Sarah B. Laskey,et al.  Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure , 2013, Cell.

[20]  Ruy M Ribeiro,et al.  Modeling the within-host dynamics of HIV infection , 2013, BMC Biology.

[21]  M. Katze,et al.  Mathematical models of viral latency. , 2013, Current opinion in virology.

[22]  D. Richman,et al.  Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs , 2013, The Lancet.

[23]  Shane T. Jensen,et al.  Quantitative phosphoproteomics reveals extensive cellular reprogramming during HIV-1 entry. , 2013, Cell host & microbe.

[24]  T. Schacker,et al.  Overcoming pharmacologic sanctuaries , 2013, Current opinion in HIV and AIDS.

[25]  R. Siliciano,et al.  Rapid Quantification of the Latent Reservoir for HIV-1 Using a Viral Outgrowth Assay , 2013, PLoS pathogens.

[26]  Stewart T. Chang,et al.  Next-Generation Sequencing of Small RNAs from HIV-Infected Cells Identifies Phased microRNA Expression Patterns and Candidate Novel microRNAs Differentially Expressed upon Infection , 2013, mBio.

[27]  R. Siliciano,et al.  Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies , 2013, PLoS pathogens.

[28]  A. Telenti,et al.  24 Hours in the Life of HIV-1 in a T Cell Line , 2013, PLoS pathogens.

[29]  S. Deeks HIV: Shock and kill , 2012, Nature.

[30]  J. Coffin,et al.  HIV reservoirs and the possibility of a cure for HIV infection , 2011, Journal of internal medicine.

[31]  Jeffrey M. Weiss,et al.  Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4+ T Cell Line , 2011, mBio.

[32]  Gregory Lefebvre,et al.  Analysis of HIV-1 Expression Level and Sense of Transcription by High-Throughput Sequencing of the Infected Cell , 2011, Journal of Virology.

[33]  Geneviève Boucher,et al.  HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation , 2009, Nature Medicine.

[34]  R. Pomerantz,et al.  Reservoirs, Sanctuaries, and Residual Disease: The Hiding Spots of HIV-1 , 2003, HIV clinical trials.

[35]  D. Wodarz Mathematical models of HIV replication and pathogenesis. , 2014, Methods in molecular biology.