Some considerations on slow- and fast-light gyros

Abstract. We discuss the effect of dispersion on the ultimate sensitivity limit of optical gyros. We present some arguments to support the fact that the dispersion can overcome some technical limitations associated with optical gyros, but cannot significantly change their fundamental sensitivity limit (given by shot-noise for passive optical gyros and by the Schawlow–Townes limit for active optical gyros).

[1]  Y. Shevy,et al.  Slow light laser oscillator , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[2]  H. Shaw,et al.  An overview of fiber-optic gyroscopes , 1984, Journal of Lightwave Technology.

[3]  M. Fleischhauer,et al.  Quantum sensitivity limit of a Sagnac hybrid interferometer based on slow-light propagation in ultracold gases , 2006 .

[4]  M. S. Shahriar,et al.  Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light , 2007 .

[5]  Lars Rippe,et al.  Spectral engineering of slow light, cavity line narrowing, and pulse compression. , 2013, Physical review letters.

[6]  Vladimir S. Ilchenko,et al.  Erratum to “Optical gyroscope with whispering gallery mode optical cavities” [Opt. Commun. 233 (2004) 107–112] , 2006 .

[7]  S. Schwartz,et al.  Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay , 2011, 1107.4474.

[8]  G. Sagnac L'ether lumineux demontre par l'effet du vent relatif d'ether dans un interferometre en rotation uniforme , 1913 .

[9]  M. S. Shahriar,et al.  Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors , 2007 .

[10]  M. Digonnet,et al.  Performance Limitation of a Coupled Resonant Optical Waveguide Gyroscope , 2009, Journal of Lightwave Technology.

[11]  Vera I. Pozdnyakova,et al.  5 Fiber ring interferometers of minimum configuration , 2013 .

[12]  B. Steinberg Rotating photonic crystals: a medium for compact optical gyroscopes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Jean-Claude Diels,et al.  Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium , 2009 .

[14]  Shaoul Ezekiel,et al.  Passive ring resonator laser gyroscope , 1977 .

[15]  Daniel J Gauthier,et al.  Enhancing the spectral sensitivity of interferometers using slow-light media. , 2007, Optics letters.

[16]  F. Bretenaker,et al.  Photon lifetime in a cavity containing a slow-light medium. , 2011, Optics letters.

[17]  W. Macek,et al.  Rotation Rate Sensing with Traveling-Wave Ring Lasers , 1963 .

[18]  S. Cooper,et al.  Design and operation of a very large ring laser gyroscope. , 1999, Applied optics.

[19]  P. Piwnicki,et al.  Ultrahigh sensitivity of slow-light gyroscope , 2000 .

[20]  Jacob Scheuer,et al.  Sagnac effect in coupled-resonator slow-light waveguide structures. , 2005, Physical review letters.

[21]  Grigorii B. Malykin,et al.  The Sagnac effect: correct and incorrect explanations , 2000 .

[22]  Vladimir S. Ilchenko,et al.  Optical gyroscope with whispering gallery mode optical cavities , 2004 .

[23]  Shanhui Fan,et al.  Performance comparison of slow‐light coupled‐resonator optical gyroscopes , 2009 .

[24]  D. H. Bradshaw,et al.  Vacuum field energy and spontaneous emission in anomalously dispersive cavities , 2010, 1006.1804.

[25]  Gea-Banacloche Passive versus active interferometers: Why cavity losses make them equivalent. , 1987, Physical review. A, General physics.

[26]  V. J. Tekippe,et al.  Passive fiber-optic ring resonator for rotation sensing. , 1983, Optics letters.

[27]  Irl W. Smith,et al.  Laser gyro at quantum limit , 1980 .

[28]  H. Wiseman Light amplification without stimulated emission: Beyond the standard quantum limit to the laser linewidth , 1999 .

[29]  Jacob Scheuer,et al.  Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity , 2007 .