Interactive Visualization of Big Data

Data becomes too big to see. Yet visualization is a central way people understand data. We need to learn new ways to accommodate data visualization that scales up and out for large data to enable people to explore visually their data interactively in real-time as a means to understanding it. The five V’s of big data—value, volume, variety, velocity, and veracity—each highlights the challenges of this endeavor.

[1]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[2]  Suman Nath,et al.  Mars: Real-time spatio-temporal queries on microblogs , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[3]  Ben Shneiderman,et al.  Extreme visualization: squeezing a billion records into a million pixels , 2008, SIGMOD Conference.

[4]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .

[5]  Leilani Battle,et al.  The Case for Data Visualization Management Systems , 2014, Proc. VLDB Endow..

[6]  Sean D Dessureault,et al.  Understanding big data , 2016 .

[7]  Michael Stonebraker,et al.  Dynamic reduction of query result sets for interactive visualizaton , 2013, 2013 IEEE International Conference on Big Data.

[8]  Pawel Terlecki,et al.  Leveraging compression in the tableau data engine , 2014, SIGMOD Conference.

[9]  Volker Markl,et al.  Faster Visual Analytics through Pixel-Perfect Aggregation , 2014, Proc. VLDB Endow..

[10]  Jarek Gryz,et al.  Visualization Through Inductive Aggregation , 2016, EDBT.

[11]  Suman Nath,et al.  Mercury: A memory-constrained spatio-temporal real-time search on microblogs , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[12]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[13]  Jordan Tigani,et al.  Google BigQuery Analytics , 2014 .

[14]  Joseph K. Bradley,et al.  Spark SQL: Relational Data Processing in Spark , 2015, SIGMOD Conference.

[15]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[16]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[17]  Pawel Terlecki,et al.  An analytic data engine for visualization in tableau , 2011, SIGMOD '11.

[18]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.

[19]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[20]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[21]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[22]  Jarek Gryz,et al.  Skydive: An interactive data visualization engine , 2015, 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV).

[23]  Jeffrey Heer,et al.  imMens: Real‐time Visual Querying of Big Data , 2013, Comput. Graph. Forum.

[24]  Michael Hausenblas,et al.  Apache Drill: Interactive Ad-Hoc Analysis at Scale , 2013, Big Data.

[25]  Pete Wyckoff,et al.  Hive - A Warehousing Solution Over a Map-Reduce Framework , 2009, Proc. VLDB Endow..

[26]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[27]  Volker Markl,et al.  M4: A Visualization-Oriented Time Series Data Aggregation , 2014, Proc. VLDB Endow..

[28]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  Jarek Gryz,et al.  Interactive Visualization of Large Data Sets , 2016, IEEE Transactions on Knowledge and Data Engineering.