Learning to share visual appearance for multiclass object detection

We present a hierarchical classification model that allows rare objects to borrow statistical strength from related objects that have many training examples. Unlike many of the existing object detection and recognition systems that treat different classes as unrelated entities, our model learns both a hierarchy for sharing visual appearance across 200 object categories and hierarchical parameters. Our experimental results on the challenging object localization and detection task demonstrate that the proposed model substantially improves the accuracy of the standard single object detectors that ignore hierarchical structure altogether.

[1]  R. Schiffer Psychobiology of Language , 1986 .

[2]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[3]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[4]  Jonathan Baxter,et al.  A Model of Inductive Bias Learning , 2000, J. Artif. Intell. Res..

[5]  Paul A. Viola,et al.  Learning from one example through shared densities on transforms , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[6]  Joshua B. Tenenbaum,et al.  Separating Style and Content with Bilinear Models , 2000, Neural Computation.

[7]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[8]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[9]  Shai Ben-David,et al.  Exploiting Task Relatedness for Mulitple Task Learning , 2003, COLT.

[10]  Yali Amit,et al.  Sequential Learning of Reusable Parts for Object Detection , 2003 .

[11]  David A. McAllester Simplified PAC-Bayesian Margin Bounds , 2003, COLT.

[12]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Yoram Singer,et al.  Large margin hierarchical classification , 2004, ICML.

[14]  Jonathan Baxter,et al.  A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling , 1997, Machine Learning.

[15]  Yair Weiss,et al.  Learning From a Small Number of Training Examples by Exploiting Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[16]  A. Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[17]  Sham M. Kakade,et al.  Online Bounds for Bayesian Algorithms , 2004, NIPS.

[18]  Ulrike Schneider,et al.  Perfect sampling for Bayesian variable selection in a linear regression model , 2004 .

[19]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[20]  Sham M. Kakade,et al.  Worst-Case Bounds for Gaussian Process Models , 2005, NIPS.

[21]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[22]  Shimon Ullman,et al.  Cross-generalization: learning novel classes from a single example by feature replacement , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Antonio Torralba,et al.  Learning hierarchical models of scenes, objects, and parts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[24]  Radford M. Neal,et al.  Improving Classification When a Class Hierarchy is Available Using a Hierarchy-Based Prior , 2005, math/0510449.

[25]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  Arindam Banerjee,et al.  On Bayesian bounds , 2006, ICML.

[27]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[28]  Brendan Juba,et al.  Estimating relatedness via data compression , 2006, ICML.

[29]  Andrew Zisserman,et al.  Incremental learning of object detectors using a visual shape alphabet , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[31]  Jean-Yves Audibert,et al.  Combining PAC-Bayesian and Generic Chaining Bounds , 2007, J. Mach. Learn. Res..

[32]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[33]  M. M. Hassan Mahmud,et al.  Transfer Learning using Kolmogorov Complexity: Basic Theory and Empirical Evaluations , 2007, NIPS.

[34]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  O. Catoni PAC-BAYESIAN SUPERVISED CLASSIFICATION: The Thermodynamics of Statistical Learning , 2007, 0712.0248.

[36]  Arindam Banerjee,et al.  An Analysis of Logistic Models: Exponential Family Connections and Online Performance , 2007, SDM.

[37]  Pietro Perona,et al.  Measuring and Predicting Importance of Objects in Our Visual World , 2007 .

[38]  Pietro Perona,et al.  Unsupervised learning of visual taxonomies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Pietro Perona,et al.  Learning and using taxonomies for fast visual categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Alexei A. Efros,et al.  Unsupervised discovery of visual object class hierarchies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[42]  Trevor Darrell,et al.  Transfer learning for image classification with sparse prototype representations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Sham M. Kakade,et al.  Information Consistency of Nonparametric Gaussian Process Methods , 2008, IEEE Transactions on Information Theory.

[44]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  M. M. Hassan Mahmud,et al.  On universal transfer learning , 2007, Theor. Comput. Sci..

[46]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[47]  Antonio Torralba,et al.  Semi-Supervised Learning in Gigantic Image Collections , 2009, NIPS.

[48]  Sanja Fidler,et al.  Evaluating multi-class learning strategies in a generative hierarchical framework for object detection , 2009, NIPS.

[49]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  B. Caputo,et al.  Safety in numbers: Learning categories from few examples with multi model knowledge transfer , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[51]  Thomas Deselaers,et al.  Localizing Objects While Learning Their Appearance , 2010, ECCV.

[52]  Jorma Rissanen,et al.  Minimum Description Length Principle , 2010, Encyclopedia of Machine Learning.

[53]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  Antonio Torralba,et al.  Semantic Label Sharing for Learning with Many Categories , 2010, ECCV.

[55]  A. Raftery,et al.  Probabilistic Projections of the Total Fertility Rate for All Countries , 2011, Demography.

[56]  Nan Li,et al.  Bayesian probabilistic population projections for all countries , 2012, Proceedings of the National Academy of Sciences.

[57]  A. Raftery,et al.  Bayesian Probabilistic Projections of Life Expectancy for All Countries , 2013, Demography.

[58]  A. Gelman,et al.  Deep Interactions with MRP: Election Turnout and Voting Patterns Among Small Electoral Subgroups , 2013 .

[59]  George Kingsley Zipf,et al.  The Psychobiology of Language , 2022 .