Modulation of Pt species on oxygen vacancies enriched TiO2 via UV illumination for photocatalytic performance optimization

[1]  Jinlong Gong,et al.  Gold nanorods-based hybrids with tailored structures for photoredox catalysis: fundamental science, materials design and applications , 2019, Nano Today.

[2]  D. Boffito,et al.  Spray-dried microporous Pt/TiO2 degrades 4-chlorophenol under UV and visible light , 2019, Journal of Environmental Chemical Engineering.

[3]  Xianzhi Fu,et al.  Broadband Light Harvesting and Unidirectional Electron Flow for Efficient Electron Accumulation for Hydrogen Generation. , 2019, Angewandte Chemie.

[4]  Yating Wang,et al.  Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction , 2018, Applied Catalysis B: Environmental.

[5]  Yi‐Jun Xu,et al.  Tunable plasmonic core–shell heterostructure design for broadband light driven catalysis† †Electronic supplementary information (ESI) available: Experimental details, 15 figures and 4 tables. See DOI: 10.1039/c8sc04479a , 2018, Chemical science.

[6]  Yadong Li,et al.  Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties , 2018, Advanced materials.

[7]  Do Heui Kim,et al.  Influence of the Defect Concentration of Ceria on the Pt Dispersion and the CO Oxidation Activity of Pt/CeO2 , 2018 .

[8]  Xiaoqing Pan,et al.  Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2. , 2017, Journal of the American Chemical Society.

[9]  Liming Xu,et al.  Photo-induced re-modulation of Pt particles loaded on V-TiO2 for enhanced CO photocatalytic oxidation , 2017 .

[10]  J. Frenken,et al.  Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. , 2017, Chemical Society reviews.

[11]  Junying Zhang,et al.  CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: Effect of deposition method and Pt precursors , 2017 .

[12]  Sean C. Smith,et al.  Light, Catalyst, Activation: Boosting Catalytic Oxygen Activation Using a Light Pretreatment Approach , 2017 .

[13]  G. Mul,et al.  Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. , 2016, Chemical reviews.

[14]  H. Ago,et al.  Enhancement of catalytic activity of AgPd@Pd/TiO2 nanoparticles under UV and visible photoirradiation , 2016 .

[15]  R. Amal,et al.  The role of adsorbed oxygen in formic acid oxidation by Pt/TiO2 facilitated by light pre-treatment , 2016 .

[16]  Michelle H. Wiebenga,et al.  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping , 2016, Science.

[17]  H. Grönbeck,et al.  Pt Nanoparticle Sintering and Redispersion on a Heterogeneous Nanostructured Support , 2016 .

[18]  Tingfeng Yi,et al.  The redispersion behaviour of Pt on the surface of Fe2O3 , 2016 .

[19]  Zhaoxiong Xie,et al.  Size controllable redispersion of sintered Au nanoparticles by using iodohydrocarbon and its implications† †Electronic supplementary information (ESI) available: Experimental details, XRD patterns, TEM and HRTEM images, XRF. See DOI: 10.1039/c5sc04283f , 2016, Chemical science.

[20]  Tao Zhang,et al.  Strong Metal-Support Interactions between Gold Nanoparticles and Nonoxides. , 2016, Journal of the American Chemical Society.

[21]  Zhichuan J. Xu,et al.  Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries. , 2015, Chemistry.

[22]  Jianjun Yang,et al.  Enhanced photocatalytic oxidation of propylene over V-doped TiO2 photocatalyst: Reaction mechanism between V5+ and single-electron-trapped oxygen vacancy , 2015 .

[23]  Christopher Hardacre,et al.  Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective , 2015 .

[24]  R. Amal,et al.  Enhancing the catalytic oxidation capacity of Pt/TiO2 using a light pre-treatment approach , 2015 .

[25]  Shuxin Ouyang,et al.  Recent advances in TiO 2 -based photocatalysis , 2014 .

[26]  Yadong Yin,et al.  Composite titanium dioxide nanomaterials. , 2014, Chemical reviews.

[27]  Yi‐Jun Xu,et al.  Defect-Mediated Growth of Noble-Metal (Ag, Pt, and Pd) Nanoparticles on TiO2 with Oxygen Vacancies for Photocatalytic Redox Reactions under Visible Light , 2013 .

[28]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[29]  J. Bokhoven,et al.  Redispersion of Gold Multiple-Twinned Particles during Liquid-Phase Hydrogenation , 2012 .

[30]  R. Mohamed,et al.  Preparation and characterization of platinum doped porous titania nanoparticles for photocatalytic oxidation of carbon monoxide , 2011 .

[31]  Chih-Chieh Wang,et al.  Electron field emission from Fe-doped TiO2 nanotubes , 2010 .

[32]  Q. Ge,et al.  Effect of Surface Oxygen Vacancy on Pt Cluster Adsorption and Growth on the Defective Anatase TiO2(101) Surface , 2007 .

[33]  Qiuye Li,et al.  Effect of photocatalytic activity of CO oxidation on Pt/TiO2 by strong interaction between Pt and TiO2 under oxidizing atmosphere , 2006 .

[34]  W. Choi,et al.  Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism , 2003 .

[35]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[36]  Nicholas Winograd,et al.  Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies , 1971 .