Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

[1]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[2]  H. Haus,et al.  77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. , 1993, Optics letters.

[3]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[4]  Magnus Karlsson,et al.  Wave-breaking-free pulses in nonlinear-optical fibers , 1993 .

[5]  A. J. Taylor,et al.  Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres , 2003, Nature.

[6]  Jerome Mertz,et al.  Epifluorescence collection in two-photon microscopy. , 2002, Applied optics.

[7]  F. Wise,et al.  Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion. , 1993, Optics letters.

[8]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[9]  Wilson,et al.  3D microscopy of transparent objects using third‐harmonic generation , 1998, Journal of microscopy.

[10]  Colin J. R. Sheppard,et al.  Second-harmonic imaging in the scanning optical microscope , 1978 .

[11]  Haohua Tu,et al.  Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation. , 2009, Optics express.

[12]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[13]  K. Fujita [Two-photon laser scanning fluorescence microscopy]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[14]  U. Keller,et al.  60-fs pulses from a diode-pumped Nd:glass laser. , 1997, Optics letters.

[15]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[16]  Michael L. Dennis,et al.  Compact sources of ultrashort pulses: Modelocking of all-fiber lasers , 1995 .

[17]  Frank W. Wise,et al.  Properties of normal-dispersion femtosecond fiber lasers , 2008 .

[18]  I. Hartl,et al.  Ultrafast Fiber Laser Technology , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  K. König,et al.  Multiphoton microscopy in life sciences , 2000, Journal of microscopy.

[20]  M Dagenais,et al.  Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser. , 1999, Optics letters.

[21]  F. Wise,et al.  Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber , 2011, IEEE Journal of Quantum Electronics.

[22]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[23]  Almantas Galvanauskas,et al.  Effectively Single-Mode Chirally-Coupled Core Fiber , 2007 .

[24]  M. Fermann,et al.  42-fs pulse generation from a mode-locked fiber laser started with a moving mirror. , 1993, Optics letters.

[25]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[26]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[27]  J. Fujimoto,et al.  Structures for additive pulse mode locking , 1991 .

[28]  S L Jacques,et al.  Optical properties of rat liver between 350 and 2200 nm. , 1989, Applied optics.

[29]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[30]  K. Kieu,et al.  Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber , 2009, IEEE Photonics Technology Letters.

[31]  A. Mehta,et al.  Multiphoton endoscopy: optical design and application to in vivo imaging of mammalian hippocampal neurons , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[32]  Patrick Georges,et al.  Laser crystals for the production of ultra-short laser pulses , 2003 .

[33]  Masud Mansuripur,et al.  Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. , 2007, Optics letters.

[34]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[35]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[36]  L. Goldberg,et al.  Single-mode operation of a coiled multimode fiber amplifier. , 2000, Optics letters.

[37]  Frank W. Wise,et al.  Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment , 2011, Optics express.

[38]  Khanh Kieu,et al.  Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. , 2010, Optics letters.

[39]  Cesar Jauregui,et al.  High average and peak power femtosecond large-pitch photonic-crystal-fiber laser. , 2011, Optics letters.

[40]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[41]  V. Centonze,et al.  Three‐photon excitation fluorescence imaging of biological specimens using an all‐solid‐state laser , 1996 .

[42]  I. Freund,et al.  Optical second‐harmonic scattering in rat‐tail tendon , 1981, Biopolymers.

[43]  Almantas Galvanauskas,et al.  Mode-scalable fiber-based chirped pulse amplification systems , 2001 .

[44]  F.W. Wise,et al.  Highly-chirped dissipative solitons in anomalous-dispersion fiber lasers , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[45]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[46]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[47]  U. Keller,et al.  Efficient and tunable diode-pumped femtosecond Yb:glass lasers. , 1998, Optics letters.

[48]  D Yelin,et al.  Laser scanning third-harmonic-generation microscopy in biology. , 1999, Optics express.

[49]  Almantas Galvanauskas,et al.  Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber , 2011, Optics express.

[50]  J. Nathan Kutz,et al.  Mode-Locked Soliton Lasers , 2006, SIAM Rev..

[51]  W. Webb,et al.  Two‐photon molecular excitation provides intrinsic 3‐dimensional resolution for laser‐based microscopy and microphotochemistry , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[52]  F. Wise,et al.  Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. , 2009, Optics letters.

[53]  A. Zvyagin Multiphoton endoscopy , 2007 .

[54]  Andy Chong,et al.  Self-similar pulse evolution in an all-normal-dispersion laser. , 2010, Physical review. A, Atomic, molecular, and optical physics.

[55]  F. Wise,et al.  All-fiber normal-dispersion femtosecond laser. , 2008, Optics express.

[56]  Winfried Denk,et al.  Multi-Photon Molecular Excitation in Laser-Scanning Microscopy , 2006 .

[57]  Ilaria Cristiani,et al.  Dispersive wave generation by solitons in microstructured optical fibers. , 2004, Optics express.

[58]  M. Zirngibl,et al.  1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser , 1991 .

[59]  I. S. Saidi,et al.  Mie and Rayleigh modeling of visible-light scattering in neonatal skin. , 1995, Applied optics.

[60]  F. Wise,et al.  Energy Scaling of Mode-Locked Fiber Lasers With Chirally-Coupled Core Fiber , 2011 .

[61]  M D Duncan,et al.  Scanning coherent anti-Stokes Raman microscope. , 1982, Optics letters.

[62]  A. Galvanauskas,et al.  Fiber-lasers for ultrafast optics , 1997 .