UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin

[1]  W. J. Cooper,et al.  Hydroxyl radical oxidation of cylindrospermopsin (cyanobacterial toxin) and its role in the photochemical transformation. , 2012, Environmental science & technology.

[2]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[3]  D. Dionysiou,et al.  A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV–vis light photocatalytic activity , 2012 .

[4]  B. Peake,et al.  TiO2-assisted photodegradation of pharmaceuticals — a review , 2012 .

[5]  Xu-xu Zheng,et al.  Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol. , 2011, Journal of environmental sciences.

[6]  Dionysios D. Dionysiou,et al.  Innovative visible light-activated sulfur doped TiO2 films for water treatment , 2011 .

[7]  Chandan Singh,et al.  Fundamentals and applications of the photocatalytic treatment for the removal of industrial organic pollutants and effects of operational parameters: A review , 2010 .

[8]  C. Minero,et al.  Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter. , 2010, The Science of the total environment.

[9]  K. O’Shea,et al.  TiO(2) Photocatalytic Degradation of Phenylarsonic Acid. , 2010, Journal of photochemistry and photobiology. A, Chemistry.

[10]  J. Guerard,et al.  Photochemical fate of sulfadimethoxine in aquaculture waters. , 2009, Environmental science & technology.

[11]  Elias Stathatos,et al.  Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water ☆ , 2009 .

[12]  J. Qu,et al.  Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. , 2009, Environmental science & technology.

[13]  Saravanamuthu Vigneswaran,et al.  A review on UV/TiO2 photocatalytic oxidation process (Journal Review) , 2008 .

[14]  Xiaoguang Meng,et al.  Mechanisms of photocatalytical degradation of monomethylarsonic and dimethylarsinic acids using nanocrystalline titanium dioxide. , 2008, Environmental science & technology.

[15]  H. Tributsch,et al.  Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies , 2007 .

[16]  K. O’Shea,et al.  Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. , 2007, Environmental science & technology.

[17]  T. Kull,et al.  Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. , 2007, Water research.

[18]  E. Rodríguez,et al.  Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. , 2007, Water research.

[19]  Lionel Ho,et al.  Bacterial degradation of microcystin toxins within a biologically active sand filter. , 2006, Water research.

[20]  Chuncheng Chen,et al.  Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation , 2005 .

[21]  F. Fontaine,et al.  Cylindrospermopsin Genotoxicity and Cytotoxicity: Role Of Cytochrome P-450 and Oxidative Stress , 2005, Journal of toxicology and environmental health. Part A.

[22]  D. Ollis Kinetics of liquid phase photocatalyzed reactions: An illuminating approach. , 2005, The journal of physical chemistry. B.

[23]  G. Newcombe,et al.  Water treatment options for dissolved cyanotoxins , 2004 .

[24]  X. Verykios,et al.  Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions , 2004 .

[25]  M. Saker,et al.  The Palm Island mystery disease 20 years on: A review of research on the cyanotoxin cylindrospermopsin , 2003, Environmental toxicology.

[26]  G. Newcombe,et al.  Simultaneous adsorption of MIB and NOM onto activated carbon: II. Competitive effects , 2002 .

[27]  A. Humpage,et al.  Preliminary evidence for in vivo tumour initiation by oral administration of extracts of the blue‐green alga Cylindrospermopsis raciborskii containing the toxin cylindrospermopsin , 2001, Environmental toxicology.

[28]  M. Fenech,et al.  Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. , 2000, Mutation research.

[29]  Frank E. Osterloh,et al.  Heterogeneous Photocatalysis , 2021 .

[30]  M. Burch,et al.  The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa , 1999 .

[31]  M. Saker,et al.  Cattle mortality attributed to the toxic cyanobacterium Cylindrospermopsis raciborskii in an outback region of North Queensland , 1999 .

[32]  L. Sowers,et al.  A proposed mechanism for the mutagenicity of 5-formyluracil. , 1996, Mutation research.

[33]  G. Codd Cyanobacterial toxins: Occurrence, properties and biological significance , 1995 .

[34]  Richard E. Moore,et al.  Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii , 1992 .

[35]  W. Haag,et al.  Singlet oxygen in surface waters — Part I: Furfuryl alcohol as a trapping agent , 1984 .

[36]  C. Cheng,et al.  Pyrimidines. XX. A convenient preparation of orotaldehyde and thymine‐6‐carboxaldehyde , 1967 .