On the weak Roman domination number of lexicographic product graphs

A vertex $v$ of a graph $G=(V,E)$ is said to be undefended with respect to a function $f: V \longrightarrow \{0,1,2\}$ if $f(v)=0$ and $f(u)=0$ for every vertex $u$ adjacent to $v$. We call the function $f$ a weak Roman dominating function if for every $v$ such that $f(v)=0$ there exists a vertex $u$ adjacent to $v$ such that $f(u)\in \{1,2\}$ and the function $f': V \longrightarrow \{0,1,2\}$ defined by $f'(v)=1$, $f'(u)=f(u)-1$ and $f'(z)=f(z)$ for every $z\in V \setminus\{u,v\}$, has no undefended vertices. The weight of $f$ is $w(f)=\sum_{v\in V(G) }f(v)$. The weak Roman domination number of a graph $G$, denoted by $\gamma_r(G)$, is the minimum weight among all weak Roman dominating functions on $G$. Henning and Hedetniemi [Discrete Math. 266 (2003) 239-251] showed that the problem of computing $\gamma_r(G)$ is NP-Hard, even when restricted to bipartite or chordal graphs. This suggests finding $\gamma_r(G)$ for special classes of graphs or obtaining good bounds on this invariant. In this article, we obtain closed formulae and tight bounds for the weak Roman domination number of lexicographic product graphs in terms of invariants of the factor graphs involved in the product.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Tadeja Kraner Sumenjak,et al.  Rainbow domination in the lexicographic product of graphs , 2012, Discret. Appl. Math..

[3]  Xindong Zhang,et al.  Domination in lexicographic product graphs , 2011, Ars Comb..

[4]  Tadeja Kraner Sumenjak,et al.  On the Roman domination in the lexicographic product of graphs , 2012, Discret. Appl. Math..

[5]  Wayne Goddard,et al.  Domination in planar graphs with small diameter , 2002, J. Graph Theory.

[6]  J. Moon,et al.  Relations between packing and covering numbers of a tree , 1975 .

[7]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[8]  I. Stewart Defend the Roman Empire , 1999 .

[9]  Stephen T. Hedetniemi,et al.  Roman domination in graphs , 2004, Discret. Math..

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Michael A. Henning,et al.  Defending the Roman Empire--A new strategy , 2003, Discret. Math..

[12]  Ermelinda DeLaViña,et al.  On Total Domination in Graphs , 2012 .

[13]  Juan A. Rodríguez-Velázquez,et al.  On the super domination number of lexicographic product graphs , 2019, Discret. Appl. Math..

[14]  V. Yegnanarayanan,et al.  On product graphs , 2012 .

[15]  Benjier H. Arriola,et al.  Doubly connected domination in the corona and lexicographic product of graphs , 2014 .

[16]  Stephen T. Hedetniemi,et al.  Total domination in graphs , 1980, Networks.

[17]  Béla Bollobás,et al.  Graph-theoretic parameters concerning domination, independence, and irredundance , 1979, J. Graph Theory.

[19]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[20]  Douglas F. Rall,et al.  Associative graph products and their independence, domination and coloring numbers , 1996, Discuss. Math. Graph Theory.

[21]  F. Harary,et al.  On the corona of two graphs , 1970 .

[22]  Teresa W. Haynes,et al.  TOTAL AND PAIRED-DOMINATION NUMBERS OF A TREE , 2004 .